Basics of Linear Optimization

- Examples
- Duality
- Polyhedrons
- Simplex-Algorithm

Example: Oil refinement

- Cracking raw oil to Light, Middle or Heavy oil
- There are two procedures:
- 1) 1 unit raw oil to $1 \mathrm{~L}, 2 \mathrm{M}, 2 \mathrm{H}$
- 2) 1 unit raw oil to $4 \mathrm{~L}, 2 \mathrm{M}, 1 \mathrm{H}$
- Costs: 1) 3 money units, 2) 5 money units
- Delivery commitments: $4 \mathrm{~L}, 5 \mathrm{M}, 3 \mathrm{H}$
- Optimization:

Minimize the total costs while satisfying all delivery commitments

Example: In the Marketplace

- We want to buy suitable amounts of potatoes, spinach and poultry

per 100g	Potatoes	Spinach	Poultry
Cost / cents	10	15	40
Protein / g	2	3	20
Carbohydrate /g	18	3	0
Calcium / mg	7	83	8
Iron / mg	0.6	2	1.4
Vitamin A / I.U.	0	7300	80

- Daily minimum requirements: 65 g of protein, 90 g of carbohydrate, 200 mg of calcium, 10 mg of iron, and 5000 I.U. of Vitamin A
- Optimization:

Spend as less money as needed to satisfy all the requirements

Example: In the Marketplace (LP)

Variables x_{1}, x_{2} and x_{3} give the amount of potatoes, spinach and poultry

Example: In the Marketplace (Xpress I)

```
model Marketplace
    uses "mmxprs"
    declarations
        NProd = 3
        NIncred = 5
        IP = 1..NProd
        II = 1..NIncred
        TAB: array(II,IP) of real
        REQ: array(II) of real
        PRICE: array(IP) of real
        x: array(IP) of mpvar
    end-declarations
MIP Oswaddifenent
```

Example: In the Marketplace (Xpress III)

```
writeln("Objective: ", getobjval)
forall(p in IP)
    write("Product",p,":",getsol(x(p))," ")
writeln
end-model
```

Example: In the Marketplace (Xpress II)

```
TAB := [20, 3, 2,
            0, 3, 18,
            8, 83, 7,
            1.4, 2, 0.6,
            80, 7300, 0]
REQ := [65, 90, 200, 10, 5000]
PRICE:= [40, 15, 10]
MinPrice := sum(p in IP) PRICE(p) * x(p)
forall(i in II)
    sum(p in IP) TAB(i,p) * x(p) >= REQ(i)
minimize(MinPrice)
MP OsmadRenenat

\section*{Example: In the Marketplace (Duality)}
- Assume we want to sell pills of protein, iron, vitamin A, etc.
- \(y_{1}\) cents/gram of protein
- \(y_{2}\) cents/gram of carbohydrate
- \(y_{3}\) cents \(/ \mathrm{mg}\) of calcium
- \(y_{4}\) cents \(/ \mathrm{mg}\) of iron
- \(y_{5}\) cents/I.U. of vitamin A
- What are suitable prices for the pills?
- The costs of the incredients of 100 g poultry shoult be cheaper than buying 100 g poultry itself. Analogously for potatoes and spinach.
- We want to maximize our income

\section*{Weak Duality Theorem}
program ( P )
\(\min \left\{c^{T} x \mid A x \geq b, x \geq 0\right\}\)
Dual linear program (D)
\(\max \left\{b^{T} y \mid A^{T} y \leq c, y \geq 0\right\}\)
Let \(x_{0} \in\{x \mid A x \geq b, x \geq 0\}\) and \(y_{0} \in\left\{y \mid A^{T} y \leq c, y \geq 0\right\}\).
Then \(b^{T} y_{0} \leq c^{T} x_{0}\) holds.

\section*{Example: In the Marketplace (dual LP)}
\begin{tabular}{rrrrrrl}
\(\max\) & \(65 y_{1}\) & \(+90 y_{2}\) & \(+200 y_{3}\) & \(+10 y_{4}\) & \(+5000 y 5\) & \\
s.t. & \(20 y_{1}\) & & \(+8 y_{3}\) & \(+1.4 y_{4}\) & \(+80 y_{5}\) & \(\leq 40\) \\
& \(3 y_{1}\) & \(+3 y_{2}\) & \(+83 y_{3}\) & \(+2 y_{4}\) & \(+7300 y_{5}\) & \(\leq 15\) \\
& \(2 y_{1}\) & \(+18 y_{2}\) & \(+7 y_{3}\) & \(+0.6 y_{4}\) & \(\leq 10\) \\
& & & & \(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\) & \(\geq 0\)
\end{tabular}

\section*{Building the Dual LP}
- equation
\(\longrightarrow \quad\) free variable
- inequality \(\quad \longrightarrow \quad\) signed variable
- signed variable \(\quad \longrightarrow \quad\) inequality

2 free variable \(\longrightarrow \quad\) equation
- objective function \(\longrightarrow \quad\) right hand side
- right hand side \(\longrightarrow \quad\) objective function

\section*{Farkas Lemma}

Theorem (Farkas Lemma):
Either there are \(x, y\) fulfilling
\[
\begin{aligned}
A x+B y & \leq a \\
C x+D y & =b \\
x & \geq 0
\end{aligned}
\]
or there are \(u, v\) fulfilling
\[
\begin{aligned}
u^{T} A+v^{T} C & \geq 0 \\
u^{T} B+v^{T} D & =0 \\
u & \geq 0 \\
u^{T} a+v^{T} b & <0 .
\end{aligned}
\]

\section*{Duality Theorem}

Let ( P ) and ( D ) be a primal-dual pair of LPs with ( P ) being a maximization and (D) a minimization problem. Let \(P\) and \(D\) be the sets of valid solutions of ( P ) and ( D ) and \(z^{*}, u^{*}\) the optimal solutions of ( P ) and (D). ( \(z^{*}\) is \(-\infty\) if \(P=\emptyset\) and \(+\infty\) if ( P ) is unbounded, \(u^{*}\) analog). Then one of the following cases holds:
- \(-\infty<z^{*}=u^{*}<+\infty \Longleftrightarrow z^{*}\) finite \(\Longleftrightarrow u^{*}\) finite
- \(z^{*}=+\infty \Rightarrow D=\emptyset\)
- \(u^{*}=-\infty \Rightarrow P=\emptyset\)
- \(P=\emptyset \Rightarrow D=\emptyset\) or \(u^{*}=-\infty\)
- \(D=\emptyset \Rightarrow P=\emptyset\) or \(z^{*}=+\infty\)

\section*{Standard Formulations of an LP}
\[
\begin{aligned}
\max & c^{T} x+d^{T} y \\
\text { s.t. } & A x+B y
\end{aligned}
\]
\[
\begin{array}{rlr}
\max & c^{T} x & \max c^{T} x \\
\text { s.t. } & A x \leq b & \text { s.t. } A x=b
\end{array}
\]

\section*{Transformating LP-Formulations}
- signed variables \(\longrightarrow\) free variables:
\(x_{i} \geq 0\) can be added to the system \(A x \leq b\).
- free variables \(\longrightarrow\) signed variables:
set \(y_{i}=x_{i}^{+}-x_{i}^{-}\)with \(x_{i}^{+}, x_{i}^{-} \geq 0\).
- equations \(\longrightarrow\) inequalities:
replace \(A x=b\) by \(A x \leq b\) and \(A x \geq b\).
- inequalities \(\longrightarrow\) equations:
replace \(A x \leq b\) by \(A x+I y=b\) and \(y \geq 0\).

\section*{Optimization Problems}

\section*{Linear program}
\[
\max \left\{d^{T} y \mid B y=a, D y \leq b, y \geq 0\right\}
\]

Mixed-integer program
\[
\max \left\{c^{T} x+d^{T} y \mid A x+B y=a, C x+D y \leq b, y \geq 0, x \geq 0, x \text { integer }\right\}
\]

Integer program
\(\max \left\{c^{T} x \mid A x=a, C x \leq b, x \geq 0, x\right.\) integer \(\}\)




MIP Oswad Renenet
\[
\text { Basisis of LLinear and discrele opininizaion: Probem Formulions - p. } 18131
\]

\section*{Polyhedrons}
- Definition: The set \(P^{=}(A, b)=\left\{x \in R^{n} \mid A x=b, x \geq 0\right\}\) is called polyhedron. If the set is bounded we call it polytope.
- Polyhedrons are convex, i.e.
\(x, y \in P^{=}(A, b) \Longrightarrow \lambda x+(1-\lambda) y \in P^{=}(A, b), \forall 0 \leq \lambda \leq 1\).
- \(x \in P^{=}(A, b)\) is called vertex if it cannot be build as a proper convex combination of \(y, z \in P^{=}(A, b)\).

\section*{Basic Theorems on Polyhedrons}
- Let \(P^{=}(A, b) \neq \emptyset . P^{=}(A, b)\) is a polytope iff \(\nexists d \geq 0\) with \(A d=0\).
- \(x \in P^{=}(A, b)\) is vertex iff the columns of \(A\) corresponding to the positive entries of \(x\) are linearly independent. The number of vertices is finite and if \(P^{=}(A, b) \neq \emptyset\) there is at least one vertex.
- Let \(P^{=}(A, b) \neq \emptyset\) and \(V\) the set of verticies. Then any \(x \in P^{=}(A, b)\) can be written as
\[
x=\sum_{v_{i} \in V} \lambda_{i} v_{i}+d
\]
with \(\lambda_{i} \geq 0, \sum \lambda_{i}=1, d \geq 0\) and \(A d=0\).
- Given the program (P): \(\max \left\{c^{T} x \mid A x=b, x \geq 0\right\}\) with \(P^{=}(A, b) \neq \emptyset\) Then either ( P ) is unbounded or one of the vertices of \(P^{=}(A, b)\) is an optimal solution of \((P)\).

\section*{Definition of the basis}

Let \(A \in R^{m \times n}, b \in R^{m}\) and \(B \subset\{1, \ldots, n\}\) defines a subset of the columns of \(A\) with \(|B|=m\) and \(A_{. i}, i \in B\), linearly independent. \(A_{B}\) denotes the corresponding submatrix of \(A\) and \(A_{N}\) the remainder.
- \(A_{B}\) is called basis and \(A_{N}\) nonbasis of \(A\).
- \(x=\left(x_{B}, x_{N}\right)\) with \(x_{B}=A_{B}^{-1} b\) and \(x_{N}=0\) is called basic solution of the basis \(A_{B}\).
- Let \(A_{B}\) be a basis. Then \(x_{j}, j \in B\) are called basic variables and \(x_{j}\), \(j \in N\) are called nonbasic variables
- A basis \(A_{B}\) and the corresponding basic solution \(x\) are called feasible if \(A_{B}^{-1} b \geq 0\) holds.
- A basic solution is called nondegenerate if \(A_{B}^{-1} b>0\) holds. Otherwise it is called degenerate.

\section*{Simplex algorithm - main idea}
- Idea of the Simplex-Method: start from one vertex and jump to a neighbour vertex with a better objective value until we reach the optimum
- How can we go from one vertex to another? Just replace one index in \(B\) !
- Two important things: choose a series of basic feasible solutions and increase (more exactly: do not decrease) objective value in each step

\section*{Vertices and basic solutions}
- Theorem.

Let \(P^{=}(A, b)\) be a polyhedron with \(\operatorname{rank}(A)=m<n\) and \(x \in P\).
\(x\) is vertex of \(P^{=}(A, b)\) if and only if \(x\) is a basic feasible solution.
- We could simply calculate all basic solutions and evaluate them - but there are exponentially many: \(\binom{n}{m}\)

\section*{Revised Simplex}

Input: Problemdata: \(A, b, c\) and feasible solution: \(B, A_{B}^{-1}, \bar{b}\)
Output: Solution of \(\max \left\{c^{T} x \mid A x=b, x \geq 0\right\}\)
(1) BTRAN (Calculate shadow prices) \(\quad \pi^{T}:=c_{B}^{T} A_{B}^{-1}\)
(2) PRICE (Price out)

Compute the reduced costs coefficients
\[
\bar{c}_{j}:=\left(c_{N}^{T}\right)_{j}-\pi^{T} A_{N} e_{j} \text { for } j=1, \ldots, n-m
\]
and choose an index \(s\) with \(\bar{c}_{s}>0\) (otherwise stop: optimal)
(3) FTRAN (Generate pivot-column) \(\quad \bar{d}:=A_{B}^{-1} A_{\text {s }}\)
(4) CHUZR (Ratio Test) \(\quad \lambda_{0}:=\min \left\{\left.\frac{\bar{b}_{i}}{d_{i}} \right\rvert\, \bar{d}_{i}>0, i=1, \ldots, m\right\}\) Choose index \(r\) with \(\bar{d}_{i}>0\) and \(\frac{\bar{b}_{i}}{\bar{d}_{i}}=\lambda_{0}\) (otherwise stop: unbounded)
(5) WRETA (Update) Update the basis \(B, A_{B}^{-1}, \bar{b}\) and goto (1)

\section*{Summary of the primal simplex}
- Optimal solution always on a vertex corresponding to a basic feasible solution
- Two sets \(B, N\) of indices, variables in \(N\) fixed
- Exchanging two indices in each step which corresponds to moving to a neighbour vertex
- Calculate the shadow prices \(\pi\) and compare with objective vector \(c\) to see, if and in which direction the objective function gets better
- Always feasible and work towards optimality

MP Osmadarineat

\section*{Open questions}
- Prove that algorithm terminates
(problem: degeneracy \(\Rightarrow\) cycling)
- How to get a feasible basis (phase I)?
- Which index \(i\) with \(p_{i}>c_{i}\) to choose? \(\Rightarrow\) pricing-strategies
- How can we efficiently treat bounds, slack variables, sparsity, matrix decompositions, updates?
- What about stability? How to avoid basis matrices with a bad condition (close to singularity)?

MP Oswaddenenet

\section*{Basics of the dual simplex}
- Definition. A basis \(A_{B}\) of \(A\) is called primal feasible if \(A_{B}^{-1} b \geq 0\), and dual feasible if the reduced costs \(\bar{c}=c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N} \leq 0\).
- The corresponding basic solution \(x\left(x_{B}=A_{B}^{-1} b\right.\) and \(x_{N}=0\) ) is called primal feasible, and the basic solution \(u^{T}=c_{B}^{T} A_{B}^{-1}\) is called dual feasible.
- Theorem. Let \(P=\left\{u \mid u^{T} A \geq c^{T}\right\}\). The vector \(u\) is a vertex of \(P\) if and only if \(u\) is a dual feasible basic solution.
- Corollary. A basis \(A_{B}\) is optimal if and only if it is both primal feasible and dual feasible.

\section*{Dual Simplex}

Input: Problemdata: \(A, b, c\) and dual feasible basis: \(B, A_{B}\)
Output: Solution of \(\max \left\{c^{T} x \mid A x=b, x \geq 0\right\}\)
(1) If \(\bar{b}=A_{B}^{-1} b \geq 0\) stop (current solution optimal)
(2) Choose an index \(r\) satisfying \(\bar{b}_{r}<0\).
(3) (Generate pivot-row) \(w_{N}^{T}=e_{r}^{T} A_{B}^{-1} A_{N}=\bar{A}_{r}\).
(4) If \(w_{N} \geq 0\) stop (dual problem unbounded)
(5) Compute \(\lambda_{0}:=\min \left\{\left.\frac{\bar{c}_{j}}{w_{j}} \right\rvert\, w_{j}<0, j=1, \ldots, n-m\right\}\) and choose an index \(s\) with \(\lambda_{0}=\frac{\tau_{s}}{w_{s}}\)
(6) Compute \(d=A_{B}^{-1} A_{. q_{s}}\)
(7) Update the basis and goto (1)

\section*{Differences primal - dual simplex}
- Dimensions of variables different: \(m\) and \(n\)
- Can solve the problem with either one, can have completely different behaviour (\# of iterations)
- Adding a variable in (P): keep feasibility.
- Adding a variable in (D): loose feasibility!
- Adding a constraint in (D): keep feasibility.
- Adding a constraint in (P): loose feasibility!```

