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Example: Oil re�nement
Craking raw oil to Light, Middle or Heavy oilThere are two proedures:1) 1 unit raw oil to 1 L, 2 M, 2 H2) 1 unit raw oil to 4 L, 2 M, 1 HCosts: 1) 3 money units, 2) 5 money unitsDelivery ommitments: 4 L, 5 M, 3 HOptimization:Minimize the total osts while satisfying all delivery ommitments
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Example: Oil re�nement (Modelling)
Introdue variables x1 and x2They represent units of raw oil raked with proedure 1) resp. 2)Objetive: minimize osts 3x1 + 5x2Constraint: positiveness x1, x2 ≥ 0Constraint: deliver at least 4 L x1 + 4x2 ≥ 4Constraint: deliver at least 5 M 2x1 + 2x2 ≥ 5Constraint: deliver at least 3 H 2x1 + x2 ≥ 3

min 3x1 + 5x2s.t. x1 + 4x2 ≥ 4

2x1 + 2x2 ≥ 5

2x1 + x2 ≥ 3

x1, x2 ≥ 0
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Example: In the Marketplae
We want to buy suitable amounts of potatoes, spinah and poultryper 100g Potatoes Spinah PoultryCost / ents 10 15 40Protein / g 2 3 20Carbohydrate /g 18 3 0Calium / mg 7 83 8Iron / mg 0.6 2 1.4Vitamin A / I.U. 0 7300 80Daily minimum requirements: 65g of protein, 90g of arbohydrate,200mg of alium, 10mg of iron, and 5000 I.U. of Vitamin AOptimization:Spend as less money as needed to satisfy all the requirements
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Example: In the Marketplae (LP)
Variables x1, x2 and x3 give the amount of potatoes, spinah and poultry

min 40x1 +15x2 +10x3s.t. 20x1 +3x2 +2x3 ≥ 65

3x2 +18x3 ≥ 90

8x1 +83x2 +7x3 ≥ 200

1.4x1 +2x2 +0.6x3 ≥ 10

80x1 +7300x2 ≥ 5000

x1, x2, x3 ≥ 0
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Example: In the Marketplae (Xpress I)
model Marketplace
uses "mmxprs"

declarations
NProd = 3
NIncred = 5
IP = 1..NProd
II = 1..NIncred
TAB: array(II,IP) of real
REQ: array(II) of real
PRICE: array(IP) of real
x: array(IP) of mpvar
end-declarations
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Example: In the Marketplae (Xpress II)
TAB := [20, 3, 2,

0, 3, 18,
8, 83, 7,
1.4, 2, 0.6,
80, 7300, 0]

REQ := [65, 90, 200, 10, 5000]
PRICE:= [40, 15, 10]

MinPrice := sum(p in IP) PRICE(p) * x(p)

forall(i in II)
sum(p in IP) TAB(i,p) * x(p) >= REQ(i)

minimize(MinPrice)
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Example: In the Marketplae (Xpress III)
writeln("Objective: ", getobjval)
forall(p in IP)
write("Product",p,":",getsol(x(p))," ")
writeln

end-model
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Example: In the Marketplae (Duality)
Assume we want to sell pills of protein, iron, vitamin A, et.
y1 ents/gram of protein
y2 ents/gram of arbohydrate
y3 ents/mg of alium
y4 ents/mg of iron
y5 ents/I.U. of vitamin AWhat are suitable pries for the pills?The osts of the inredients of 100g poultry shoult be heaper thanbuying 100g poultry itself. Analogously for potatoes and spinah.We want to maximize our inome
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Example: In the Marketplae (dual LP)
max 65y1 +90y2 +200y3 +10y4 +5000y5s.t. 20y1 +8y3 +1.4y4 +80y5 ≤ 40

3y1 +3y2 +83y3 +2y4 +7300y5 ≤ 15

2y1 +18y2 +7y3 +0.6y4 ≤ 10

y1, y2, y3, y4, y5 ≥ 0

MIP Oswald/Reinelt Basics of Linear and Discrete Optimization: Examples – p.10/31

Weak Duality Theorem
Primal linear program (P)

min {cT x | Ax ≥ b, x ≥ 0}Dual linear program (D)
max {bT y | AT y ≤ c, y ≥ 0}Let x0 ∈ {x | Ax ≥ b, x ≥ 0} and y0 ∈ {y | AT y ≤ c, y ≥ 0}.Then bT y0 ≤ cT x0 holds.
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Building the Dual LP
equation −→ free variableinequality −→ signed variablesigned variable −→ inequalityfree variable −→ equationobjetive funtion −→ right hand sideright hand side −→ objetive funtion
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Farkas Lemma
Theorem (Farkas Lemma):Either there are x, y ful�lling

Ax +By ≤ a

Cx +Dy = b

x ≥ 0or there are u, v ful�lling
uT A +vT C ≥ 0

uT B +vT D = 0

u ≥ 0

uT a +vT b < 0.
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Duality Theorem
Let (P) and (D) be a primal-dual pair of LPs with (P) being amaximization and (D) a minimization problem. Let P and D be the setsof valid solutions of (P) and (D) and z∗, u∗ the optimal solutions of (P)and (D). (z∗ is −∞ if P = ∅ and +∞ if (P) is unbounded, u∗ analog).Then one of the following ases holds:

−∞ < z∗ = u∗ < +∞ ⇐⇒ z∗ �nite ⇐⇒ u∗ �nite
z∗ = +∞ ⇒ D = ∅
u∗ = −∞ ⇒ P = ∅
P = ∅ ⇒ D = ∅ or u∗ = −∞
D = ∅ ⇒ P = ∅ or z∗ = +∞
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Theorems of Complementary Slakness
Let (P) and (D) be a the following primal-dual pair of LPs:

(P ) max{cT x | Ax ≤ b} (D) min{uT b | uT A = cT , u ≥ 0}.Theorem of weak omplementary slakness: Let x and u be feasiblesolutions of (P) and (D). Then they are optimal if and only if:
ui > 0 =⇒ Ai.x = bi ∀i.Theorem of strong omplementary slakness: If there exist feasiblesolutions for both (P) and (D) then there exist optimal solutions x and uwith:
ui > 0 ⇐⇒ Ai.x = bi ∀i.
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Standard Formulations of an LP
max cT x +dT ys.t. Ax +By ≥ a

Cx +Dy = b

x ≥ 0

max cT xs.t. Ax ≤ b

max cT xs.t. Ax = b

x ≥ 0
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Transformating LP-Formulations
signed variables −→ free variables:
xi ≥ 0 an be added to the system Ax ≤ b.free variables −→ signed variables:set yi = x+

i − x−i with x+
i , x−i ≥ 0.equations −→ inequalities:replae Ax = b by Ax ≤ b and Ax ≥ b.inequalities −→ equations:replae Ax ≤ b by Ax + Iy = b and y ≥ 0.
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Optimization Problems
Linear program

max {dT y | By = a, Dy ≤ b, y ≥ 0}Mixed-integer program
max {cT x + dT y | Ax+ By = a, Cx+ Dy ≤ b, y ≥ 0, x ≥ 0, x integer}Integer program
max {cT x | Ax = a, Cx ≤ b, x ≥ 0, x integer}
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Polyhedrons
De�nition: The set P=(A, b) = {x ∈ Rn | Ax = b, x ≥ 0} is alledpolyhedron. If the set is bounded we all it polytope.Polyhedrons are onvex, i.e.
x, y ∈ P=(A, b) =⇒ λx + (1− λ)y ∈ P=(A, b), ∀ 0 ≤ λ ≤ 1.
x ∈ P=(A, b) is alled vertex if it annot be build as a proper onvexombination of y, z ∈ P=(A, b).
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Basi Theorems on Polyhedrons
Let P=(A, b) 6= ∅. P=(A, b) is a polytope i� ∄d ≥ 0 with Ad = 0.
x ∈ P=(A, b) is vertex i� the olumns of A orresponding to thepositive entries of x are linearly independent. The number of vertiesis �nite and if P=(A, b) 6= ∅ there is at least one vertex.Let P=(A, b) 6= ∅ and V the set of vertiies. Then any x ∈ P=(A, b)an be written as

x =
∑

vi∈V

λivi + d

with λi ≥ 0, ∑
λi = 1, d ≥ 0 and Ad = 0.Given the program (P): max{cT x | Ax = b, x ≥ 0} with P=(A, b) 6= ∅.Then either (P) is unbounded or one of the verties of P=(A, b) is anoptimal solution of (P).
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De�nition of the basis
Let A ∈ Rm×n, b ∈ Rm and B ⊂ {1, . . . , n} de�nes a subset of theolumns of A with |B| = m and A.i, i ∈ B, linearly independent. ABdenotes the orresponding submatrix of A and AN the remainder.

AB is alled basis and AN nonbasis of A.
x = (xB , xN ) with xB = A−1

B b and xN = 0 is alled basi solution ofthe basis AB.Let AB be a basis. Then xj , j ∈ B are alled basi variables and xj ,
j ∈ N are alled nonbasi variablesA basis AB and the orresponding basi solution x are alled feasibleif A−1

B b ≥ 0 holds.A basi solution is alled nondegenerate if A−1
B b > 0 holds. Otherwiseit is alled degenerate.
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Verties and basi solutions
Theorem.Let P=(A, b) be a polyhedron with rank(A) = m < n and x ∈ P .
x is vertex of P=(A, b) if and only if x is a basi feasible solution.We ould simply alulate all basi solutions and evaluate them - butthere are exponentially many: (

n
m

)
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Simplex algorithm - main idea
Idea of the Simplex-Method: start from one vertex and jump to aneighbour vertex with a better objetive value until we reah theoptimumHow an we go from one vertex to another?Just replae one index in B!Two important things: hoose a series of basi feasible solutions andinrease (more exatly: do not derease) objetive value in eah step
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Revised Simplex
Input: Problemdata: A, b, c and feasible solution: B, A−1

B , bOutput: Solution of max{cT x | Ax = b, x ≥ 0}(1) BTRAN (Calulate shadow pries) πT := cT
BA−1

B(2) PRICE (Prie out)Compute the redued osts oe�ients
cj := (cT

N )j − πT ANej for j = 1, . . . , n−mand hoose an index s with cs > 0 (otherwise stop: optimal)(3) FTRAN (Generate pivot-olumn) d := A−1
B A.s(4) CHUZR (Ratio Test) λ0 := min{ bi

di
| di > 0, i = 1, . . . , m}Choose index r with di > 0 and bi

di
= λ0 (otherwise stop: unbounded)(5) WRETA (Update) Update the basis B, A−1

B , b and goto (1)
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Summary of the primal simplex
Optimal solution always on a vertexorresponding to a basi feasible solutionTwo sets B, N of indies, variables in N �xedExhanging two indies in eah step whihorresponds to moving to a neighbour vertexCalulate the shadow pries π and omparewith objetive vetor c to see, if and in whihdiretion the objetive funtion gets betterAlways feasible and work towards optimality
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Open questions
Prove that algorithm terminates(problem: degeneray ⇒ yling)How to get a feasible basis (phase I)?Whih index i with pi > ci to hoose? ⇒priing-strategiesHow an we e�iently treat bounds, slakvariables, sparsity, matrix deompositions,updates?What about stability? How to avoid basismatries with a bad ondition (lose tosingularity)?
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Finding a feasible start basis
Two phases. In phase I we solve the problem
min{∑i si | Ax + s = b, x, s ≥ 0} starting withthe feasible basis s = b, x = 0.If optimal solution has solution s 6= 0 theoriginal problem is infeasible, else x is feasiblefor it (goto phase II).Problem: needs many iterations, whole basismust be exhanged at least one
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Basis of the dual simplex
De�nition. A basis AB of A is alled primalfeasible if A−1

B b ≥ 0, and dual feasible if theredued osts c = cT
N − cT

BA−1
B AN ≤ 0.The orresponding basi solution x (xB = A−1

B band xN = 0) is alled primal feasible, and thebasi solution uT = cT
BA−1

B is alled dual feasible.Theorem. Let P = {u | uTA ≥ cT}. The vetor
u is a vertex of P if and only if u is a dualfeasible basi solution.Corollary. A basis AB is optimal if and only if itis both primal feasible and dual feasible.
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Dual Simplex
Input: Problemdata: A, b, c and dual feasible basis: B, ABOutput: Solution of max{cT x | Ax = b, x ≥ 0}(1) If b = A−1

B b ≥ 0 stop (urrent solution optimal)(2) Choose an index r satisfying br < 0.(3) (Generate pivot-row) wT
N = eT

r A−1
B AN = Ar.(4) If wN ≥ 0 stop (dual problem unbounded)(5) Compute λ0 := min{ cj

wj
| wj < 0, j = 1, . . . , n−m}and hoose an index s with λ0 = cs

ws(6) Compute d = A−1
B A.qs(7) Update the basis and goto (1)
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Summary of the dual simplex
Applying the dual algorithm to (P) is the sameas applying the primal algorithm to (D)The dual of the dual is the primal againFeasible solutions of (P) and (D) bound oneanotherPrimal: �rst hoose entering index, then deidewhih index has to leave the basisDual: �rst hoose leaving index, then deidewhih index has to enter the basis

MIP Oswald/Reinelt Basics of Linear and Discrete Optimization: Simplex – p.30/31

Di�erenes primal - dual simplex
Dimensions of variables di�erent: m and nCan solve the problem with either one, an haveompletely di�erent behaviour (# of iterations)Adding a variable in (P): keep feasibility.Adding a variable in (D): loose feasibility!Adding a onstraint in (D): keep feasibility.Adding a onstraint in (P): loose feasibility!
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