Graphentheorie

8. Übungsblatt WS 05/06

Abgabetermin: 16.01.06

Exercise 37

A line of a matrix is a row or a column of the matrix. Show that the minimum number of lines containing all 1's of a $(0,1)$-matrix is equal to the maximum number of 1 's, no two of which are in the same line.

Exercise 38

Describe how the Hungarian method can be used to find a maximum matching in a bipartite graph.

Exercise 39

Two people play a game on a graph G by alternately selecting distinct vertices v_{0}, v_{1}, \ldots such that, for $i>1$, v_{i} is adjacent to v_{i-1}. The last player able to select a vertex wins. Show that the first player has a winning strategy iff G has no perfect matching.

Exercise 40

A diagonal of an $n \times n$ matrix is a set of n entries no two of which belong to the same row or the same column. The weight of a diagonal is the sum of the entries in it. Find a minimum-weight diagonal in the following matrix:

$$
\left(\begin{array}{cccc}
4 & 5 & 8 & 10 \\
7 & 6 & 5 & 7 \\
8 & 5 & 12 & 9 \\
6 & 6 & 13 & 10
\end{array}\right)
$$

Exercise 41

We call a component of a disconnected graph as odd (even) if it has odd (even) number of vertices. For a given graph G we denote the number of odd components by $q(G)$. Show that a tree G has a perfect matching iff $q(G-v)=1$ for all $v \in V(G)$.

