The problem: There are mmachines that are used to process
n jobs. A schedule specifies, for each machine |
(i=1,2,....,m) and each job | (j=1,2,...,n ) one ore more time

intervals throughout whichi processing is performed on j by
Combinatorial Optimization Problems i

= thereisno overlapping of time intervals corresponding to
the same job,
= thereisno overlapping of timeintervals correspondin
Géabor Galambos 2pping &P 9

to the same machine,
= jt issatisfies various requirements related to the specific

Heidelberg problem type.
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The rrechirie environenerit |,

An operation refersto a specified period of processing by
some machine type.

Single-stage production systems: each job requires one

operation.

We assume that all machines become available to process . .
= single machine

jobs at time zero.

=  mmachines operating parallel
identica parallel machines. each processing time is

A problem type is specified by independent of the machine performing the job.
uniformly parallel machines. the machines operate at
= the machine environment different speeds but otherwise they areidentical .
= thejob characteristic unrelated parallel machines: the processing time of a
= an optimality criterion. job depends on the machine assignement.
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Tre rnechirie envirornmert 1.

Multi-stage production systems. there are s stages, each

having a different function. In a

flow shop the processing of each job goes through the
stages 1,2,...,sin that order,

open shop like the flow shop, but the routing that
specifies the sequence of stages through which a job
must pass, can differ between jobs and forms part of
the decision process,

job shop each job has a prescribed routing through the
stages, and the routing may differ from job to job.
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Jop crizrecteristics |,

A job may be characterized by its

= Processing requirements

= Availability for processing
= Precedence constraints

= |nterruption conditions
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Processing regjuirermnents

For the job j the processing time is denoted in case of

* single machine and identical parallel machinesby p;,

= uniform paralledl machines on machine i may be
expressed as p; /s, where s is the speed of machinei,

= unrelated parallel machines
for flow shop and open shop pj; is the processing time on
machine/stagei,
for job shop p; denotes the processing time of the ith
operation (which is not necesseraly performed at stagei).

‘We can assume that al p; and p; are integers.

‘ We will denote by pyy the maximum value of all p; or p;;. ‘

A}

A\

The availability of each job j may be restricted by its

* integer release date r; that defines when it becomes
available for processing,

= integer deadline d; that specifies the time by which it
must be completed. (It is called sometimes as duedate).

Heidelberg 2005/2006 8 u

Heidelberg 2005/2006 9 u




onistraints, ancl interrugtion

liS][6195 S NESTIECEUENCE OV e OIRK:  NEN CAnNOINSIANILS
processinojuntiltiis conpleted:

Precedence congtraints are specified by a directed acyclic
precedence graph G with vertices 1,2,....n: there is a
directed path from vertex j to vertex k if and only if job j
has precedence over job k.

IS UAE 9IOCES
estimed
MachiNe L
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Ogtirnielity criterizil,

For each job j, an integer due date d; and a positive integer
weight w, may be specified. For a given schedule o, we can
compute for job j:

completion time Ci(o) G

flow time Fi(0) F, |=Gl)-1

lateness Li(o) L |=Clo)-d

earliness E(o) E | = max{d-C(0), O}
tardiness T(0) | T0) | = max{ C(0)-d, O}

cost fi(0) fi | =1f(Ci0))

alowance (o) & |=d-r

Woclel clzssification

Off-line model: the scheduler has full information of the
problem instance, such as total number of jobs, their
released dates and processing times, before the process of
scheduling actualy starts.

On-line model: information about the problem instance is
made available to the scheduler job by job during the
course of scheduling.

In nearly on-line scheduling the released date of next job
is always known to the scheduler.

In each model we assume that the scheduler’s decision to
assign and schedule ajob or operation isirrevocable.

Orrline roclel classif

The classes are different according to the way of inform-

ation on job characteristics is released to the scheduler. We
distinguish:

= Scheduling over list, where the scheduler is confronted
with the jobs one-by-one as they appear in the list. The
existence of ajob is not known until al ist predecessors
have already been scheduled.

= Scheduling over time, where all jobs arrive at their release
dates. The jobs are scheduled with the passage of time
and, at any time, the scheduler only has knowledge of
those jobs that have already arrived.
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Orrline rnocel clzesificetion ||

Both above model (scheduling over list, scheduling over
time) supposes that once a job is known to the scheduler,
its processing requirement is also known. So we call these
models clairvoyant.

In case of non-clairvoyant model the processing requirem-
ent of ajob isunknown until ist processing is completed.
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The optimality criteriainvolve

A. The minimization of

maximum completion time (makespan) | C, max C;
maximum |ateness L e max; L
maximum cost frrex ma; f;
maximum tardiness Trrex maxT;
maximum flow time Frax max;F;
maximum earliness Erax max; E;
maximum allowance Ao max; &
maximum waiting time Wia | maX, Wi
Heidelberg 2005/2006 16 W

The optimality criteriainvolve

B. The minimization of

total (weighted) completion time 2i(w)C;
total (weighted) flow time 2i(w)F,

total (weigted) earliness 2i(w)E

total (weighted) tardiness 2i(wW)T;

total (weighted) allowance 2i(w)ay

total (weighted) waiting time 25 (w)W,
(weighted) number of |ate jobs 2wy,
total cost 2f
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Usually, we call an optimality criteria R asregular, if it is
non-deacreasing in the completion times.

If R isregular, then if

Cc,<C,,C,<C,,and C,<C,,
then

R(C,.C,.....C.) < R(C,.Cp.....C.)

Theorem: C.. Frow Lo Ty i€ regular ebjective
functions.
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Three-field representation
(Graham, Lawler, Lenstra, Rinnooy Kann)

‘ We will use athree-field descriptor: ‘

llachimn: Oplimality crltesie:

Vi

Let o denote the empty symbol.
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single machine
identical parallel machine
uniform parallel machine

Let a = a 0,04 Where °
P
Q
R unrelated parallel machine
O
F
J

open shop
flow shop
job shop

la,6{0,P,Q,R F,0,J}]

single machine
the number of machineism
the number of stagesiss

w3 0

o single stage or several stages
each with a single machine

(Pm) multi-stage with m identical
parallel machines at each stage

(Pm,,...Pm)  multi-stage with m,
‘aSE{O, (Pm),(Pmy,....Pm), (P)} ‘ iﬂdmtiial parallel machines at
age

(P) multi-stage with an arbitrary
number of identical parallel
machines at each stage
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BE(PrBoBsBubss) where]

‘ﬁle{ o, on-line-list, on-line, on-line-list-nclv, on-line-nclv} ‘

‘ B> € o,r;} indicates whether jobs have release time. ‘

‘ B €[ ©, d } indicates whether jobs have deadlines.

‘ B4 €( ©, pmtn} indicates whether jobs may be preempted. ‘

Bs € o, prec} indicates whether jobs have precedence
constraints.

Bs <{ 2, p = 1, p; = 1} indicates whether jobs have unit
processing time.
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Examples

1] r;, prec| 2;wC; is the problem of scheduling jobs with
release dates and precedence constraints on a single
machine to minimize the total weighted completion time.

R| pmtn | L, isthe problem of preemptively scheduling
jobs on an arbitrary number of unrelated parallel machines
to minimize the maximum lateness.

O3 | pj = 1| X;Vj is the problem of scheduling jobsin a
three-machine open shop to minimize the number of late
jobs, where the processing time of each operation is one
unit.
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The Coupled-Tasks Problem(CTP): ‘

We are given n jobsEach of them consisting of two distinct
operations. The sequence of operations are fixed and also a fixed
length of delay-time passes between the two parts.

Thei-tejobisdenoted by a triple (a,L;b) where
* 8; = the processing time of the first task,

* L; = the delay time between the tasks, and

* b, = the processing time of the second task.

The aim isto schedule the n coupled-tasks on one machine
in such a way that

¢ no jobs areoverlaped

« the makespan (C,,,,) has to be minimized.

* no preemption is allowed.

1|Coup-Task|C, .
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wimalwiih)

Proof.

Trax = Max{max{L,,0}, max{L,,0},...,max{L,.0}, }
=max{L,,L,,...,L,0}

= max{L 5.0}
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Methodologies for solving a scheduling problem ‘

1. Examine the complexity of the problem

P — 1] XwC
NP — J|| Crrax
2.Incaseof Pweuse
Greedy agorithms
SPT, SWPT rule — 1] 2XwG
EDD rule — 1] | Ly

Enumerative algorithms
Dynamic Programing —1[|Xf

Single Machine Processing

Example: Processing of jobs through a small non-time-
sharing computer.

Branch and Bound — 1|1} | Lyax

3. In case of NP we use
Local Search — P || Cux
Approximation algorithms — P | | C,,
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Shortest Processing Time Scheduling \

Proof. Consider any optial sequence o, and suppose that
some job k is sequenced before another job j, where d, > d;

pk pk pk
k j
o N ‘ .
1 2 3 4 5 7 10 1 2 13 14 15 16
< J k
o' : .
— —
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Observation 1: all jobs sequenced before k and after j in o
have the same completion time in both sequences.

Observation 2: job j together with all jobs sequenced
between kandj in o are completed p, units earlierino .

Lk(O'\) = CL,(O") _dli = Ci(a) —d|_, < CJ(O') _dj = LJ(O')
So
Lyol@) SLym(o)|  =mmmp | isalso optimal.

Repetition of thisjob reinsertion argument yields an
optimal sequence in which jobs appear in EDD order.

O
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Exercise (Smith, 1956) : Let us prove that for the problem
1|iwjCj an optimal solution is obtained in O(nlogn) time
by sequencing jobs in non-decreasing order of p,/w;.
(SWPT rule)

Hints: use an adjacent interchange procedure for those of
pairs where p/w, > p/w;.
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Lemma: In an optima schedule the first k jobs (k=1,2,...,n) aso
formed an optima schedule for the reduced problem based on just
these k jobs alone.

Proof: Let ( j j,..-j;) be an optima schedule. Then for any K
k=1,...,n, we may decompose the objective function:

n k n
m'n_ZTj=m'n2Tj+ min}. T,

j=1 j=1 j=k+1

Let us now consider the set of jobs {j; ji,...j;}, and produce the
optimal schedule. If we can improve upon the sequence (j; ,ji,- - -+i)»
then we would able to reduce the first term above.

We can construct a new sequence for the full problem by using the
theimproved scheduling for thefirst k jobs, and leaving the

| The Total Weighted Tardiness|

Theorem (Held, Karp, 1962): The problem 1 || T, can be
solved by dynamic programming technique.

To prove the theorem we need the following Lemma.

= L et the period k be the situation when we consider the
sets of k elements.

= The state set S, in the k-te period contains all schedules
belonging to the permutations of thet jobsin hand.

= During the decision procedure in the k-te period we
choose a permutation with minimum property
according to the objective function.

remaining (nsk). jobsin their original order. - %
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S = {the set of al permutations of jobSj,j,,. . ji}

The decision variables are:

inS: X n o ind

inS:  Xe={iv i Ainoiat }

NS0 X ={ivizwdndtso {izJadnt}

The states are the values of the objective function:

z,=2(S)=min} T, =min} max (G, —d,)
S =S e jiem

and so

Z = [TIEQ {Zk—l(SK- {JI}) + TJl}
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Example: Solvetheproblem 1||¥ T if ‘

I 2 s Ia
Processing time ( p;) 8 6 10 7
due date (d;) 14 9 16 16

‘ Let us cal culate the dynamic programming procedure.
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Computational complexity of the dynamic programming

Number of operation required

Complete enumeration

Dynamic programming

n 6n(n!)+3(n!-1) 6n2+L+ 3(2-1)
4 647 237
10 |2.286x10° 33789
20 |2.992x10% 6.396 x 107
40 |1.983x10% 1.352x 104
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Dynamic Programming to precedence constraints

Example: Solvethe problem 1| L if |

1 2 IE a
Processing time ( p;) 8 6 10 7
due date (d,) 12 9 16 10

\ and the precedence constrains are: \
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Theorem (Dominance condition): in an 1|| 3. T; problem if
two jobs J; and J, are such that p, ='p; and d; < d; then
exists an optimal schedule in which J; precedes J,.

Proof: Let us suppose that we have an optimal schedule o
where the conditions hold and J, precedes J,.

Py Pk P
K j

o E—

T
2 3 5 7 0 22 13 1 15 16

, !
o' : I

T
6 7 8 9 10 1 12 13 14 15 16

Lo) = QKIO;)—_dK

Tzl seniseltile s i b

27, 28[32 PV F¥1 L(o’) = Cla) =d, = C(a) =d < C(o) —d, = Lj(0).
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