Prof. Dr. Gerhard Reinelt
Dipl.-Math. Marcus Oswald
Dipl.-Inf. Dino Ahr

Institut fir Informatik
Universitdt Heidelberg

http://www.iwr.uni-heidelberg.de/iwr/comopt/

VisAlg - Visualisation of Algorithms
Programmer-Manual

July 11, 2001

Contents

1 Introduction 3

2 Concepts of VisAlg 3
2.1 The Application e e e e 3
2.2 The History o o e e 3
2.3 TheProject e 3
2.4 The Modular Concept of VisAlg 4

2.4.1 The VisAlg Event Model 4
2.4.2 The Module Manager 4
243 TheModule 4
2.4.4 Deriving from AbstractModule 5
245 DataModules. L 5
2.4.6 Algorithms and Commands 5
2.5 The Data/Viewer Concept of VisAlg 6
2.5.1 Properties L e e e e 6
2.5.2 The PropertyManager Interface 6
2.5.3 Viewer Modules 6
2.6 Data Representation 7
2.7 Serialization 7
2.7.1 Project Serialization 7
2.7.2 How the History Remembers Project States 7
2.7.3 Serialization of VisAlg Data and Creating New Data 8
2.74 Converters L e 8
2.8 Visual Concepts of VisAlg L 8
2.8.1 Screen Layout and Interaction, 8
2.8.2 Module Windows 9
2.8.3 Algorithm Windows 9

3 How To Write an Algorithm Module 9
3.1 Deriving From Algorithm 9
3.2 Member Variables L 10
3.3 The Constructor e e 10
3.4 The Command Classes v vt i it it e e e e e 10
3.5 Creating the Module Window oo 11

4 How To Write a Module Window Class 12

4.1 Deriving From Class AlgorithmWindow 12
4.2 Member Variables L L 12
4.3 The Constructor o it i e e e e e e 12
4.4 The Methods e 13
5 Known Bugs 13

1 Introduction

VisAlg is a software used for the visualisation of algorithms. First, reading the user manual
is highly recommended. This manual describes all VisAlg concepts and their implementation
from the programmers point of view. All the information needed to develop enhancements can
(hopefully) be found here. Furthermore, it explains all internal implementations of the VisAlg
concepts. This information is just for educational purposes, it is not recommended to make use
of any of these implementation facts (like protected member names, pointers ...) in your own
modules, since they are most likely to be changed in future versions.

This manual has been written by Matthias Vigelius. If you encounter any problems, mistakes and
so on please contact me at : muigelius@gmaz.de.

2 Concepts of VisAlg

2.1 The Application

The Application is the main object in VisAlg, connecting the visual part (see section 2.8) and the
History (see section 2.2). Its main purpose is to construct both a new History object and a new
Application Window object at startup. It is furthermore responsible for the serialization of whole
projects (which is the wrong expression, since in fact it serializes the History).

2.2 The History

The History manages all currently loaded projects (see section 2.3). It contains a list of these
projects and a reference to the current project. If the user chooses another project, the History
loads it and marks it as the current object. If the user saves the current project, the list is
enhanced by this project, which is duplicated first. If the step() method is invoked (either by
pressing the step button or by the step thread), the history calls the step method of the current
project. Futhermore an undo functionality is realised by another list of projects, which is increased
by every step invokation. If the users presses the undo button, the last project in the undo history
is loaded. Beyond this, the history is capable of discarding and restoring the project windows.
This is done by calling the newWindows() method of the current project.

Only one history object should exist at any time, although it can contain more than one project.

2.3 The Project

The Project mainly consists of a list of currently loaded modules (see 2.4.3) and a counter repre-
senting the number of performed steps up to now. The project represents one certain state of the
demonstration, including loaded modules, currently opened windows, etc. More than one project
object can exist at one time, but they are all connected to one history (see section 2.2). The
project also contains a comment string, which is shown in the history window.

As a module manager (see section2.4.2), the project contains methods to add and remove modules.
Although this functionality is already implemented, the user can not make use of it yet. The most
important method, however, is step, which is invoked by the history if a global step has been
inititated. Internally, the private method projectStep() will then be called, which asks every
module if it is steppable, and then calls its step() method.

As for the module windows in the project, the project theoretically can discard and restore the win-
dows by calling discardWindows() and newWindows(). The project will then search the modules
list, and call Module.newModule Window() if its state is currently set to “showing”. Additionally
the project time is increased by one.

2.4 The Modular Concept of VisAlg

One of VisAlgs key features is its modular concept. In principle, a module is just a piece of code,
which is capable of executing itself step by step. A module could be everything : An algorithm
(which probably is the most commonly used application) but also a visual element (like a window)
or even a game. By registering itself as a module manager, the module can start sub-modules and
in such a way implement a recursive algorithm. Due to the object model of java, every user can
develop his own modules in a safe way, without depending on the current VisAlg version. These
modules could also be downloaded from the internet and thus VisAlg provides a great variety of
applications.

2.4.1 The VisAlg Event Model

In order to give modules the possibility of reacting to each other, VisAlg uses an event model,
which is very close to the Swing event concept. The communication between different modules is
done using two interfaces : OtherModule and ModuleListener.

If a certain module wishes to let other modules be connected to itself, it just implements the inter-
face OtherModule. It then overrides the two methods addModuleListener(ModuleListener) and re-
moveModuleListener(ModuleListener) which are called if a module listener wants to register itself.
Normally, these implementations add listeners to a list and call moduleChanged(ChangeEvent) of
all modules in the list if a change has occured. Additionally, the methods getTime() and toString()
have to be implemented. This standard functionality is encapsulated in the class AbstractModule
and it is more easy to derive from this class (see section 2.4.4).

On the other hand, if a module wants to be notified if a change has occured (e.g. the data has been
changed), it first gets a reference to this module by exploiting the module manager functionality
(see section 2.4.2), and then registers itself as a listener. For this, it is necessary to implement
the interface ModuleListener. Every time the module has changed, it will then call the method
module Changed(Module ChangeEvent) which of course has to be overwritten.

It is worth mentioning here, that a class can register itself as a project listener in the same way,
by implementing the interface ProjectListener. This functionality is up to now only used by the
class Project Window.

2.4.2 The Module Manager

As already mentioned, every module (which in fact means the instance of a class) is connected to
exactly one module manager. The standard module manager is the project, but a module can also
act as a module manager. A module manager is responsible for the administration of modules.
This is commonly done by a list, containing all modules. The module manager implements the
interface ModuleManager. In this way, it provides functions for adding or removing modules and
invoking a global step.

2.4.3 The Module

In order to have a standard interface, every module must at least implement the interface Module.
These methods are necessary for the communication with the module manager, which in most
cases is the project itself. It is highly recommended, to derive from the class AbstractModule (see
section 2.4.4) rather than implementing these methods yourself.

2.4.4 Deriving from AbstractModule

AbstractModule is the recommended base class for all modules. Every module should be derived
either from this class or from one of its subclasses. It provides functionality for the communication
with the module manager as well as for registration and notification of submodules.

The constructor is called with two arguments : the name of the module and a reference to
the module manager. It provides the member method fireEvent(), that can be called if the
module has been changed. This function will notify all connected listener as well as the associated
module window of the change. Using the functions getDataModules() respective getModules()
the associated viewer module can easily access the list of all modules on the same level as this.
That means, that these functions will not return the submodules of this one. AbstractModule also
provides access to important member variables. Furhermore all administration for adding and
removing listener is done by this class.

The following methods should be overwritten by own modules :

e getNodelcon(), if another than the standard icon should appear in the tree.

e getSubModules() returns null. If any submodules are used, this function should be overwrit-
ten.

e newModule Window() should create a new instance of the associated viewer window.

e step(). This method contains all module functionality from VisAlgs point of view. It is called
every time, the user initiates a step event. In your own method, the superclass method should
always be called at the end, in order to set member states correctly.

2.4.5 Data Modules

The data module is the VisAlg representation of data. There is no restriction on what exactly
this data is, since due to the modular data concept, every kind of data can be modelled. For
more information on the data concept see section 2.6. The class DataModule has two main access
functions, getData() and getDataClass(). These functions can be used by any module to determine
the type of the data this module contains and to get a reference to the data itself.

The DataModule itself acts as a ModuleManager (see section 2.4.2). If new data is loaded or
created, it reads out the available viewer classes and registers them as submodules. These can
then be opened by the user.

This class is also capable of loading and saving data to a file as well as print it to the standard
output stream. Its associated module window class is DataModule Window, in which the user
interaction takes place.

2.4.6 Algorithms and Commands

Most VisAlg modules implement certain algorithms like sorting and so on. The easiest way to
write an algorithm module is to derive it from the class Algorithm.

The idea behind this class is, that an algorithm consists of various commands (like pointer com-
parison, data manipulation) which are executed step by step. A command is implemented by an
inner class derived from AbstractCommand and overriding its two member functions, dolt() and
toString(). The first one contains the code, which is executed for this command, the latter one
merely returns a string naming the command. Another possibility is, to rather implement the
interface Command which is exactly the same. At the beginning all commands should be stored

in the array m_commands in order to make this list available to other modules (like the Trigger
Module). Every command should set the next command after its execution, using setNextCom-
mand(Command). If the algorithm has finished, setDone(boolean) must be called with value true,
in order to mark this algorithm as finished.

It is in principle not necessary to overwrite any of these functions, except the constructor, which
must set the command list as well as the first command, and the newModule Window() method.
Practically, it can be useful to overwrite for example the step() method. In this case, it is necessary,
to call the superclass method at the end. It might also make sense, to override specific functions
of the class AbstractModule.

2.5 The Data/Viewer Concept of VisAlg

Since VisAlg is a software, that visualises algorithms, one of its most important tasks is, to visualise
data. This is done by so called Viewer Modules (see section 2.5.3). A Viewer module represents
a certain kind of data, like an array of integer etc., which is hold in the Data module (see section
2.4.5). The communication between both is done using Properties (see section 2.5.1). Note, that
VisAlgs concept of properties is slightly different to the JavaBean property concept.

2.5.1 Properties

The idea behind the property concept is, that information consists not merely of data, but also
needs an interpretation of this data. The interpreter is in our case the module, that works on this
data, like an algorithm, for example. In order to visualise an algorithm, it might be useful, to not
just visualise the data, but on the other hand, some internal information of the algorithm itself.
This internal data is stored in the algorithm module using properties. The algorithm registers its
properties at the data module, and the viewer module looks for all properties, it can understand.

The base class for all properties is the class PropertyObject. Properties should be hold and serialized
in the algorithm module.

Standard sorting algorithms can make use of the class IndicatorBarProperty, which are recognised
by the class ArrayViewer.

2.5.2 The PropertyManager Interface

The Data module (see section 2.4.5) manages all properties, that are connected to the data hold.
The communication between an algorithm and the data module is done using the interface Prop-
ertyManager.

An example, of how this functions are used, is given in the section 3.

2.5.3 Viewer Modules

Viewer modules visualise a certain kind of data including the properties. When the Data module

(see section 2.4.5) loads or creates new data, it calls the function VisAlgData.register ViewerModules(Module Manager,
DataModule). This function creates all viewer modules, that fit this data type, and registers them

at the specified ModuleManager.

A Viewer module must be derived by the class ViewerModule and implement the methods as
described there.

Most of the work is done in the Viewer module windows paint(GraphicsContext) method. The
window can access the data by the data module member function getData() and can query the
properties it can recognise by using queryProperties(String)().

An example for a viewer module is the class ArrayViewer.

2.6 Data Representation

In principle, the data module (see section 2.4.5) can contain every data, which is represented by
a java object. However, there are some classes, which make life easier for simple data.

Every data object must implement the interface VisAlgData. If possible, the member functions
getComponent and paintComponent(java.awt. Graphics, int, int) should be overwritten in order
to return a convenient graphics object and to paint itself in a useful way. For example, the class
VisAlgInt will return a JLabel object and paint itself as a string.

Most data objects, for example an int value, can be compared to another data of the same type.
For this kind of data, the class can implement the interface VisAlgComparableData. Apart from
the methods described above, this class must also implement the java interface Comparable, which
exactly means to implement the method CompareTo(Object). There are no more specifications to
the algorithm, classes can be compared to another, than the java specification gives.

Since both of the above described classes implement the interface Cloneable, it might necessary,
to override the function clone(), depending on the data. For more information about this topic,
consult the Java API Documentation.

There are two types of ready-made data classes in VisAlg : VisAlgInt and VisAlgMatriz. These
classes should be sufficient for most standard algorithm purposes.

2.7 Serialization
2.7.1 Project Serialization

If the user chooses to store the project, the serialization process will be initiated. This task is very
simple. The application just stores its history object, using the API function writeObject(Object).
This function will store the whole History object including all members. Hence, it is necessary
for each class to implement the API interface Serializable. This is done automatically, if deriving
from predefined superclasses.

In order to load a previously stored object, the API function readObject() is invoked. After that,
the transient references have to be set. To restore the corresponding window state, the member
method newWindows() will be called, which creates all windows of the history, including all module
windows.

Additionally, the function afterDeserialisation() is called, after the deserialisation has been com-
pleted.

2.7.2 How the History Remembers Project States

The History is capable of remembering a certain project state, which can be restored afterwards.
Internally, this is done by calling the member function saveProject(). This method duplicates the
current Project object and appends it to its internal list. If the user wants to reopen this state,
the list member is duplicated again, and set to be the current Project. After this, the windows
need to be repainted using newWindows().

2.7.3 Serialization of VisAlg Data and Creating New Data

The data in a Data Module (see section 2.4.5) can be stored and reloaded binary. This is simply
done by the API serialization function writeObject(Object) respective the ObjectReader class which
simply invokes the API function ReadObject().

A more sophisticated task is performed, if new data should be created out of an ASCII file.
After a data file is specified, the program tests the first character of the first line for Objec-
tReader.converterMagicNumber, which is currently “!”. If this string exists, the rest of this line is
interpreted as a class name. The class referred to by this name is then instanciated using the API
function Class. NewInstance() and a test is performed, if this class is an instance of Converter.
If this is the case, the member function getData(File) will be called, which then arranges the
converting of the ASCII file to a VisAlg data object, that can be set as the current data. If the
converter is not explicitly given in this file, the user will be asked, to name a converter class, that
can be used for this kind of data. Converter classes are described in greater detail in the section

2.7.4.

2.7.4 Converters

A converter must implement the interface Converter, which consists of one method getData(File).
The implementation reads in the file line by line and extracts the data information, for example
by using the API StringTokenizer class. As a result, the function must return either an VisAlg
data object as described in the section 2.6 or an array of this.

2.8 Visual Concepts of VisAlg
2.8.1 Screen Layout and Interaction

The root object in VisAlgs windows hierarchy is the class Application Window. It sets up the
main menubar and is responsible for the handling of the menu events (like loading project, edit
preferences etc.). The VisAlg window is then divided into two parts. The right part contains the
module windows. For this part, Application Window provides a desktop manager, which resets the
window bounds of each module window, if the users changes its size. The left part contains the
History Window and the Project Window represented by one JSplitPane swing object. On the
bottom is a status window, containing internal information. The History window and the Project
window can be set using the functions SetProject Window(Project Window) and SetHistory Win-
dow(HistoryWindow). These functions set the windows at the according position in the splitted
left pane.

The History window will be created, if the function History.newWindows() is called, which is the
case at startup. It is represented by the class HistoryWindow. The window itself contains the
CD-Panel, which is responsible for both, the navigation through the saved project states, and
the stepping of the modules. If the user chooses another project state, the history will load this
state as described in the section 2.7.2. Furthermore, the user has the possibility to either perform
just one step, which internally invokes the member function History.step(), or to start or stop
a continuous stepping. This is done by an own thread, that is started, at the creation of the
HistoryWindow object. This thread is activated or deactivated by pressing the play/pause button
and invokes the function History.step() as well. The second visual object of this window is the
table, which contains the saved project states. The user can choose one as described above.

The Project window is the second part of the split window. The associated class is Project Window
which is created, if the function Project.newWindows() is called at startup of if the window config-
uration needs to be restored, for example after deserialization. It contains a tree showing all loaded

modules. If the user doubleclicks one of them, the associated method Module.newModule Window()
will be called. The window also contains a panel, giving the user the possibility to remove modules
or change the module order. In future versions, the user will be able to add or remove modules
freely.

2.8.2 Module Windows

A module window is the visual counterpart of a module. It is the only possibility for the user, to
interact with a module. It is created by the module member function newModule Window(), which
should be overwritten in order to create a new instance of the module window class as described
in the section 2.4.4.

Every module window must be derived from the class Module Window. The constructor must first
call the superconstructor Module Window(String, Module, Rectangle, Module WindowContainer)
with the necessary arguments. These arguments must be provided by the calling function in the
associated module class and can be received by the member functions of AbstractModule. It might
be useful, to overwrite the function module Changed(javaz.swing.event. ChangeEvent) to react on
module events. Most module windows, for example, contain a step counter, which is increased on
every step action.

The functionality, a module window provides, depends up to now only on the programmers special
likings. It is indeed planned, to create a single module window superclass, which might contain a
standard interface for each module window, including viewer module windows.

2.8.3 Algorithm Windows

When writing a window for an algorithm module, one can make use of the class Algorithm Window.
The advantage of this class is, that it provides some standard functionality.

First, it shows the algorithm time in the window. This class then gives the user the possibility
to choose a data module. At last, the developer can provide an own Menu, that will be added
automatically to the main menu bar and removed, if the user closes the window.

To add a menu, the method onLoadMenu(JMenu menu) must be overwritten. Own menu items
can be added there.

3 How To Write an Algorithm Module

This section describes on an example, how the writing of an algorithm module works. The example
module, that is used, is the DummyAlgorithm module, written by Martin Spoden.

3.1 Deriving From Algorithm
Every algorithm should be derived from the class Algorithm, such is this :

public class DummyAlgorithm extends Algorithm

10

3.2 Member Variables

Member variables should be declared at the beginning of a class declaration. The only member
variable, we use here, is m_state :

private int m_state;

Every member state should be declared private, unless it is absolutely needed to let other classes
access member states directly.

3.3 The Constructor

The constructor calls the superclass constructor first with super (s,mm) ; and passes the arguments
to it. It then sets the member variable m_done=false;. This command is obsolete, since the
Algorithm sets the algorithm state to false automatically.

public DummyAlgorithm(String s, ModuleManager mm) {
super (s, mm);
m_done = false;
m_commands = new AbstractCommand[4];
m_commands [0] = new CommandO();
m_commands[1] = new Command1();
m_commands [2] new Command2() ;
m_commands [3] new Command3() ;
m_state = 1;
m_nextCommand

new Command(() ;

}

The next step is, to create a new AbstractCommand array in order to tell other modules, which
commands are available in this algorithm. The array is initialised with four different command
classes, which are declared as private inner classes.

The m_state variable is initialised with 1, this can of course be different at other algorithms.

At last, the m_nextCommand variable is initialised with a CommandO object. This is the first com-
mand, that will be executed.

3.4 The Command Classes

All command classes are declared as private inner classes. In this case, we have four different
command classes.

The first one, Command0, increases the member variable m_state with one, until it has reached 50.
Then the next command will be Command1.

private class Command0 extends AbstractCommand {
public void doIt() {

if (m_state < 50) {
setNextCommand (new CommandO()) ;
m_state++;

}

else {
setNextCommand (new Command1());

11

m_state++;
}
}
public String toString() {
return "operation 0";
}

The command execution takes place in the overwritten metho doIt (), in which the member vari-
able m_state is increased with one. The next command is set with the line setNextCommand (new
Command1()); with an anonymous Command1 class created. It is absolutely necessary to set a new
command, after the current has been executed. The algorithm will else get caught in an inifinite
loop.

The command description is provided by the method toString(), that will return a short string,
containing informations to this command.

The classes Command1 and Command?2 are similar, they will not be described here.

The fourth command class is Command3 :

private class Command3 extends AbstractCommand {
public void doIt() {
if (m_state < 200) {
setNextCommand (new Command3()) ;
m_state++;
}
else {
setNextCommand (null) ;
setDone(true) ;
m_state++;
}
}
public String toString() {
return "operation 3";
}

The difference to the other classes is in the else branch of the condition. Since the algorithm
has finished its work, the next command will be set to null. Additionally, the superclass method
setDone (true) ; is called in order to tell the ModuleManager that this algorithm has finished.

3.5 Creating the Module Window
The last method in this class is newModuleWindow () :

public void newModuleWindow() {
try {
m_moduleWindow =
new DummyAlgorithmWindow ("DummyAlgorithm" + m name,
this,
m_moduleWindowBounds,

12

m_moduleManager.getModuleWindowContainer ());
} catch (Exception e) {}

The associated Module Window class is DummyAlgorithmWindow. How this is written is described
in the next section. Note that the creation is embedded in a try / catch environment in order
to catch possible exceptions, that could be thrown by the Java API.

4 How To Write a Module Window Class

4.1 Deriving From Class AlgorithmWindow

A window to an algorithm module should be derived from the class Algorithm Window :

public class DummyAlgorithmWindow extends AlgorithmWindow {

4.2 Member Variables

This dummy algorithm window should show three things :

e The current module time
e The data that is currently used

e The command, that has been executed last

Note that the first two are done automatically by deriving from Algorithm Window.

We use a JLabel object for each information :

private transient JLabel m_commandTesterLabel;

Additionally, it is necessary to store a reference to the DummyAlgorithm module :

private transient DummyAlgorithm m_dummyAlgorithm;

4.3 The Constructor

The constructor is responsible for three tasks. It first must create the window itself. This is done
by the superclass constructor. It then must create the components of the window, which are in
our case one JLabel objects. It must at last initialise internal states.

public DummyAlgorithmWindow(String s, DummyAlgorithm da, Rectangle bounds,
ModuleWindowContainer mwc) {

super (s, da, bounds, mwc);
m_dummyAlgorithm = da;

m_commandTesterLabel = new JLabel("last command: " + m_dummyAlgorithm.getLastCommand());
m_contentPane.add (m_commandTesterLabel) ;
revalidate();

13

The superclass constructor is called at the beginning. After that, a reference to the module is
stored in order to receive information of it. The next thing, that is done here, is the initialisation
of the JLabel objects with an initial text. They have to be added to the window pane. At last,
revalidate() is called in order to repaint the window including its components.

4.4 The Methods

The only method, that is overwritten in this example, is moduleChanged (ChangeEvent) :

public void moduleChanged(ModuleChangeEvent cEvt) {
super .moduleChanged (cEvt) ;
m_commandTesterLabel.setText("last Command: " + m dummyAlgorithm.getLastCommand());
invalidate();
repaint) ;

It simply sets the labels to show the right information, and then causes the window to be repainted.
Note that the superclass method is called first in order to make sure, that all standard information
will be shown correctly.

5 Known Bugs

e Not really a bug, but not nice : If a module acts as a ModuleManager, some methods are
not unique. Developers must really take care of this !

e On serialization, not all windows (esp. viewer windows) can be restored

14

