The Symmetric Traveling Salesman Problem (STSP) asks for a
minimum length Hamilton cycle in a complete graph. The Symmetric Traveling Salesman Polytope on n nodes, STSP(n), is the convex hull of all incidence
vectors edge sets of Hamilton cycles. |
The Graphical Traveling Salesman Problem (GTSP) is defined analogously to the STSP, except that it allows to visit nodes and/or traverse edges more than once. The Graphical Traveling Salesman Polyhedron on n nodes, GTSP(n), is equal to the convex hull of all incidence vectors of edge multi-sets of spanning closed walks. | ||||||||||
The facets of STSP and GTSP partition into classes: all members of a class are equal modulo permutation of nodes. The inequalities files list only one representative per class. The facet defining inequalities are given in tight triangular form, except for the non-negativity inequalities xe ≥ 0. |
|||||||||||
STSP(5)Status: complete descriptionOnly non-negativity and subtour facets. |
GTSP(5)Status: complete description (Fonlupt, J. and D. Naddef, 1992, The Traveling Salesman Problem in graphs with some excluded minors. Math. Program. 53 (2), 147--172)Only non-negativity, degree, and subtour facets. |
||||||||||
STSP(6)Status: complete description
|
GTSP(6)Status: complete description (Oswald, M., G. Reinelt and D.O. Theis, 2005, Not every GTSP facet induces an STSP facet, in: M. Jünger and V. Kaibel (eds.) Integer Programming and Combinatorial Optimization 2005, Springer)
|
||||||||||
STSP(7)Status: complete description (Boyd, S.C. and W.H. Cunningham, 1991, Small Travelling Salesman Polytopes. Math. Oper. Res., 16, 259--271)
|
GTSP(7)Status: complete description (Oswald, M., G. Reinelt and D.O. Theis, 2005, Not every GTSP facet induces an STSP facet, in: M. Jünger and V. Kaibel (eds.) Integer Programming and Combinatorial Optimization 2005, Springer)
|
||||||||||
STSP(8)Status: complete description (Christof, T., M. Jünger and G. Reinelt, 1991, A Complete Description of the Traveling Salesman Polytope on 8 Nodes. Oper. Res. Lett., 10, 497--500)
|
GTSP(8)Status: complete description (Oswald, M., G. Reinelt and D.O. Theis, 2005, Not every GTSP facet induces an STSP facet, in: M. Jünger and V. Kaibel (eds.) Integer Programming and Combinatorial Optimization 2005, Springer)
|
||||||||||
STSP(9)Status: complete description (Christof, T. and G. Reinelt, 1996, Combinatorial optimization and small polytopes. Top 4 (1), 1--53)
|
GTSP(9)Status: complete description (Oswald, M., G. Reinelt and D.O. Theis, The geometry of the Graphical Relaxation of the Symmetric Traveling Salesman Polytope, abstract
|
||||||||||
STSP(10)Status: conjectured complete description (Christof, T. and G. Reinelt, 2001, Decomposition and Parallelization Techniques for Enumerating the Facets of Combinatorial Polytopes. Int. J. Comput. Geom. Appl. 11, 423--437)
|
GTSP(10)Status: conjectured complete description (Oswald, M., G. Reinelt and D.O. Theis, D. Büttner: Improving the Performance of Outer Description Calculations of GTSP Polyhedra using High Performance Computing Methods)
|
||||||||||
ReferencesJünger, M., G. Reinelt and G. Rinaldi1995 The Traveling Salesman Problem M. Ball, T. Magnanti, C.L. Monma and G.L. Nemhauser, eds. Handbooks in Operations Research and Management Sciences: Networks North-Holland Grötschel, M. and M.W. Padberg 1985 Polyhedral theory E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, eds. The Traveling Salesman Problem Chichester:Wiley & Sons Naddef D. and G. Rinaldi 1993 The Graphical Relaxation: A New Framework for the Symmetric Travelling Salesman Polytope Math. Program., 58, 53--87 A library of STSP problem instances is provided by TSPLIB. |
Comments or suggestions? Mail to: comopt at informatik dot uni-heidelberg dot de
Last modified: Januar + September 2011