
HUHFA User Manual

Olga Heismann∗ Achim Hildenbrandt† Francesco Silvestri†

August 30, 2013

1 Introduction

The polyhedral approach to combinatorial optimization problems studies the structure of
their associated polytopes. One way is to compute complete linear descriptions of small
polytopes in order to generalize the equations and inequalities. “Small polytopes” might
actually not look so small at first sight: There is often a huge number of facet-defining
inequalities already for very small problem sizes.

However, there are also often many symmetries implied by the combinatorial structure
of the problem which can be used to classify the facets. These symmetries act on the feasible
solutions and naturally form a group. In their representation as maps on the variable values
they can be extended to symmetries acting on the polytope, and one can prove that they
map vertices of the polytope to vertices of the polytope, and facets to facets. We say that
those facet-defining inequalities which are similar in the sense that they can be transformed
onto each other by some symmetry belong to one class.

Understanding all the facet-defining inequalities of a combinatorial optimization problem
polytope then reduces to understanding one facet from each class.

To do this classification, one applies the symmetries to the facet-defining inequalities and
then checks whether any two facets can be transformed into each other and hence belong to
the same class. Often, this check is not so easy as two linear expressions describing the same
facet might differ by the sum of multiples of several equalities from the problem description.

The check can be accomplished by defining a so-called normal form for the representa-
tion of inequalities—inequalities which have the same normal form describe the same facet.
To this end, problem-specific normal forms were developed for some extensively studied
combinatorial optimization problems. In general, the representation of facet-defining in-
equalities in the orthogonal complement of the linear subspace spanned by the equations
can be of course used as a normal form for the facets of a polytope. However, this needs

∗Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany, heismann@zib.de.
†Ruprecht-Karls-Universität Heidelberg, INF 368, 69120 Heidelberg, Germany,

achim.hildenbrandt@informatik.uni-heidelberg.de, f.silvestri@stud.uni-heidelberg.de.

1

techniques from linear algebra and can therefore raise numerical issues. Unfortunately, nor-
mal forms that can be described combinatorially are often not known. Hence, having a
method that can be applied to every combinatorial optimization problem and relies solely
on the combinatorial structure of the polytope is desirable.

Indeed, HUHFA uses a novel technique for classifying facets without using normal forms.
The main idea is to identify every facet defining inequality with the vertices of the polytope
which satisfy it with equality. With this method, complete descriptions of polytopes com-
puted by a software like PORTA1 (or a similar package) can be analyzed to divide the facets
into equivalence classes according to groups generated by given symmetry mappings.

For more information on the theoretical background of how HUHFA works see the article
downloadable from the HUHFA website2.

1http://comopt.ifi.uni-heidelberg.de/software/PORTA
2http://comopt.ifi.uni-heidelberg.de/people/hildenbrandt/HUHFA

2

http://comopt.ifi.uni-heidelberg.de/software/PORTA
http://comopt.ifi.uni-heidelberg.de/people/hildenbrandt/HUHFA

2 Installing

In order to use HUHFA, the first thing you need to do is to move the following files in one
directory:

• classify.cpp

• input.cpp

• output.cpp

• synthesize.cpp

• script.cpp

• huhfa.h

Afterwards, the file script.cpp has to be build with a given C++ compiler (you may alter-
natively use the provided makefile). In order to be independent of operating system, we will
refer to the resulting file as huhfa.

3

3 Input Formats

In order for HUHFA to work properly, three files are needed to encode the information of a
given polytope. These files need to have the same name with different filename extensions
.huh, .poi and .poi.ieq, so we that we can refer to a complete set of input files

• polytope.huh

• polytope.poi

• polytope.poi.ieq

just by “polytope” where the output would be stored in the file

• polytope.huhfa.

The format of the input files is described in the following subsections, each followed by an
example describing the three-dimensional unit-cube Q3 = [0, 1]3. Note that HUHFA uses
space characters in order to parse the input files. Therefore, it is necessary to use at least
one space character whenever it is used in the following descriptions.

4

polytope.poi

• Line 1 denotes the dimension of the modeling space, that is, the number of variables
used, by DIM = n.

• Line 2 consists of the word INDEX.

• Line 3 contains all variables used in the modeling process, separated by a space char-
acter. Note that variable names can be arbitrary as long as the first character is a
letter and it contains no spaces.

• Line 4 consists of the word CONV_SECTION.

• Lines 5,. . . ,4+ v each contain the coordinates of a single vertex from the given poly-
tope, separated by a space character, in the order of the variables in Line 3.

• Line 5+ v consists of the word END.

This way, the file Q3.poi of Q3 is given by:

1 DIM = 3
2 INDEX
3 x1 x2 x3
4 CONV_SECTION
5 0 0 0
6 1 0 0
7 0 1 0
8 0 0 1
9 0 1 1

10 1 0 1
11 1 1 0
12 1 1 1
13 END

5

polytope.poi.ieq

This file contains facet-defining inequalities describing all facets of the polytope.

• Line 1 contains DIM = n where n is the number of variables used, just as in Poly-
tope.poi.

• Line 2 consists of the word INDEX.

• Line 3 contains the variables used in the same format and order as in Polytope.poi.

• Line 4 consists of the word INEQUALITIES_SECTION.

• Lines 5,. . . ,4+ f contain a facet defining inequality each.

• Line 5− f consists of the word END.

Suppose a facet-defining inequality is given by aT x ≤ b where a = (ai), b = (bi) and
x = (x i) are the variables from Line 3. We set ai = si ãi where si denotes the sign of ai and
ãi is the absolute value of ai. Then the inequality is expressed as the line

(no.) s1a1 x1s2a2 x2 . . . snan xn <= b

Please note the following:

• The brackets at the beginning will not be parsed and can be used to number the in-
equalities. They can also be left out. Either way, at least a space character has to come
before the first term of the inequality.

• At least a space character before and after <= is required.

• There may be space characters after the variables, but the terms siai x i may not be
separated.

• Any terms where ai = 0 may be dropped.

• Any terms where ãi = 1 may drop the ãi.

For example, consider the facet-inducing inequality x1 ≤ 1 for Q3. Following the guide-
lines above, HUHFA can parse all of the following lines in order to read this inequality:

1 (44) +1x1+0x2+0x3 <= 1
2 (44) +x1 +0x3 <= 1
3 +1x1 +0x2+0x3 <= 1
4 +x1 <= 1

6

Therefore, Q3.poi.ieq could have the following content:

1 DIM = 3
2 INDEX
3 x1 x2 x3
4 INEQUALITIES_SECTION
5 (1) +x1 <= 1
6 (2) +x2 <= 1
7 (3) +x3 <= 1
8 (4) -x1 <= 0
9 (5) -x2 <= 0

10 (6) -x3 <= 0
11 END

7

polytope.huh

Each line of this file has the same structure and describes a bijection of the vertices in poly-
tope.poi given through an affine map.

Suppose such a bijection is given by x 7→ Ax + b where A = (ai j), b = (bi) and x =
(x i) contains the names of the variables in the same order as in polytope.poi. Further,
suppose that ai j = si j ãi j where si j is the sign of ai j and ãi j describes the absolute value of ai j,
analogously bi = t i b̃i. Then the corresponding line in polytope.huh looks like this:

s11ã11 x1s12ã12 x2 . . . s1nã1n xn t1 b̃1 s21ã21 x1s22ã22 x2 . . . s2nã2n xn t2 b̃2 . . . sn1ãn1 x1 sn2ãn2 x2 . . . snnãnn xn tn b̃n ;

In essence, we write down each coordinate of the image as a string of the corresponding
term, separate the coordinates by the space character and finish with a space character
followed by a semicolon.

Please note:

• The absolute value t i b̃i has to be the last summand in every coordinate.

• Any terms where ai j = 0 or bi = 0 may be dropped.

• Any terms where ãi j = 1 may drop the ãi j.

To make this more clear, consider the map given by

(x1, x2, x3) 7→ (1− x1, x3, x2).

When using this map on the vertices of Q3, it is clear that the first entry is "flipped" and the
other two entries are permuted, so this certainly is a bijection of the vertices of Q3 and thus
valid for Q3.huh. This map is affine and thus has a representation in the form above which
is

x 7→

−1 0 0
0 0 1
0 1 0

x +

1
0
0

Therefore, Q3.huh could contain either of the following lines:

1 -1x1+0x2+0x3+1 0x1+0x2+1x3+0 0x1+1x2+0x3+0 ;
2 -x1+1 +x3 +x2 ;

The whole file Q3.huh could look like this:

1 -x1+1 +x3 +x2 ;
2 +x3 -x2+1 +x1 ;
3 +x2 +x1 -x3+1 ;

8

4 Usage

Prior to using huhfa, make sure that the files polytope.huh, polytope.poi and polytope.poi.ieq
we want to classify are in one directory.

You can start huhfa from a terminal by using the following parameters:

• huhfa polytope

• huhfa polytope rep

• huhfa polytope closed

• huhfa polytope repclosed

In this case, polytope simply denotes the name of the files we want to process and the
second argument is optional.

Without a second argument, huhfa will classify the facets with regard to the given sym-
metries and store the complete equivalence classes in polytope.huhfa. Note that in order
to do this, huhfa will implicitly compute the closure of the vertex-bijections given by poly-
tope.huh.

Using rep will only affect the output file polytope.huhfa. Instead of the whole equiva-
lence classes, only a representative facet-defining inequality will be stored for each equiva-
lence class.

Using closed may only be used when the maps given in polytope.huh are already closed
under composition. This will result in a speedup as the computation of the closure can be
skipped, but will most certainly result in errors and/or wrong results when the maps in
polytope.huh are not closed.

Using repclosed is used in order to use rep and closed at the same time.
So in order to classify our example with the standard settings, we would enter

huhfa Q3

into the terminal.

9

5 Descriptions of Available Methods

The central part of HUHFA is the class huhfa which is used for all computations. huhfa has
the following methods:

• huhfa(string source)
The constructor is reading the input files and stores their content as the raw data of
the polytope.

• huhfa.synthesize()
This method uses the raw data given by the input files and computes the data needed
for the actual classifying process. This includes creating incidence vectors as well as
transforming the affine maps into vertex permutations. The transformation reduces
the time of the following operations.

• huhfa.classify(bool complete)
This method computes the equivalence classes using the synthesized data.

• huhfa.output(string result, bool rep)
This is used to store the equivalence classes into an output file.

It should be clear from context that the methods described above may only be used in
the given order as they need the information of the method before to work properly.

Additionally, there are some test methods in order to inspect the internal data of the
huhfa class. They are not intended to be used by the user but are self-explanatory for a
programmer working with the huhfa-code and may thus be looked up in the code.

10

	Introduction
	Installing
	Input Formats
	Usage
	Descriptions of Available Methods

