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Königsberg’s Bridge Problem 

 Königsberg is a city which was the capital of East 
Prussia but now is known as Kaliningrad (Russia).  

 The city is built around the river Pregel where it breaks 
into 2 parts. An island named Kneiphof is in the middle 
of where the river splits. At the XVIII century, 7 bridges 
joined the 4 parts of the city. 

 People tried to find a way to walk all seven bridges 
without crossing a bridge twice, but no one could find a 
way to do it.  



Königsberg’s Bridge Problem 



Königsberg’s Bridge Problem 
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Each time a closed walk passes through a node, it will traverse two different 
edges incident with that node 

If all the edges have to be traversed exactly once, then the 
number of edges incident with a node (degree) must be even  

Königsberg’s Bridge Problem 

Euler pointed out that finding a route traversing every bridge exactly once is 
possible if and only if : “when we traverse a bridge and arrive to a zone of 
the city, we should leave it by crossing another bridge”. 



The Chinese Postman Problem 

 At the sixties, Meigu Guan, a mathematician at the 
Shandong Normal College, was encouraged (like many 
other scientists in China) to solve real-life problems 
during the Great Leap Forward movement (1958-1960), 
which attempted to transform the country from an 
agrarian to a modern economy. 

 
     “When the author was plotting a diagram for a postman's 

route, he discovered the following problem: A postman 
has to cover his assigned segment before returning to the 
post office. The problem is to find the shortest walking 
distance for the postman”. 



The Chinese Postman Problem 

 While the Königsberg’s Bridge Problem raised only the 
problem about the existence of a tour and obtaining it .... 

 now the problem is dealing with situations in which 
probably there is not a Eulerian tour, but that need for a 
real solution. 

 If a graph does not have an Eulerian tour, a natural 
question is that of obtaining a minimum length tour 
traversing every edge in the graph at least once (Chinese 
Postman Problem, CPP) 

 



The Chinese Postman Problem 

 Guan's article referred to optimizing a postman's route, was 
written by a Chinese author, and appeared in a Chinese 
maths journal.  

 It seems that Alan Goldman mentioned it to Jack Edmonds 
when Edmonds was a member of Goldman's Operations 
Research group at the U.S. National Bureau of Standards.  

 It is not know if Goldman suggested the name “Chinese 
Postman Problem” to Edmonds or whether it was Edmonds 
who coined that name. 

 It seems that the name appeared for the first time in the title of 
an abstract by Edmonds for the 27th ORSA meeting (May 
1965): “The Chinese Postman’s Problem”. 

 



Pictures  



Arc Routing Problems 

 Problems related to the traversal of some 
(or all) of the arcs of a transportation 
network   
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Garbage collection 



Street cleaning and garbage 
collection 

 (2002) Valencia: 
o Street cleaning (daily): 1028 workers, 11 trucks 
o Street watering:               39 trucks 
o Garbage collection:    10584 bins + 792 (glass) 

+ 711 (cardboard) + 25 (plastic) + 30 (other) 
101 trucks  

 
o Budget  2007 : 130.107.449 Euros (18,23 %) 



Street cleaning and garbage 
collection 

First work: CLARK & GILLEAN (1975) 
(1972-1974) Cleveland: 
o Significant reductions in the garbage 

collection cost: 
 from 1640 workers to 850 workers. 
o Budget: from 14.8 million dollars in 1970 
           to 8.8 million dollars in 1972  
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Snow and Ice control 



Highway 720 during a snow storm in Montrèal. The Montreal Gazette, 07/03/2011 

(Synchronized Arc Routing for Snow Plowing Operations, Salazar-Aguilar, Langevin, Laporte, 2011) 

Snow and Ice control 



Snow and Ice control 

(1987-88) Indiana: 
o Budget of the Highway Department for 

winter maintenance: 15 million dollars. 
o 114000 miles (roads and highways) 
        1500 workers 
        1000 vehicles 
 
HASLAM & WRIGHT (1991) 



“The importance of winter road maintenance is due to the 
magnitude of the expenditures associated to these operations, 
and to the indirect costs resulting from the loss of productivity 
and decreased mobility.  
In the United States alone these operations consume over $2 
billion yearly in direct costs.  
In Japan and Europe snow removal expenditures are two 
to three times those of the United States”. 

(Salazar-Aguilar, Langevin, Laporte, 2011) 

Snow and Ice control 



“In Montrèal the average cost of a 20 cm snow storm in 2010 
was $17 million Canadian dollars.  
Each year, the city has to clear 6,550 km of sidewalks and 
4,100 km of streets.  
On average, there are 65 weather events calling for response 
every winter.  
Snow clearings performed in four stages: salting, plowing, 
removal, and disposal.  
Plowing operations begin as soon as there is an 
accumulation of 2.5 cm of snow on the ground and continue 
as long as the storm lasts, ending about eight hours after the 
snow stops falling”. 

Snow and Ice control 
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Pierce Point Minimization in 
Flame Cutting 

 Pierce Point Minimization and Optimal Torch Path 
Determination in Flame Cutting  

 Manber & Israni (1984) considered the problem of minimizing 
the number of piercing points required in the laser cutting 
process. 



Moreira et al., 2007 

Cutting path determination problem 

A large company manufactures high precision tools for wood, 
plastic and composite materials. The production process includes 
the cutting of cutting heads which have to be cut off from expensive 
circular plates made of tungsten with a thin diamond layer. 
The problem consists of finding an optimal cutting path for the 
cutting out of pieces.  



The cutting process is performed by an “electrified copper string”.  
Basically, the electrified string traverses the circular plate,  
cutting out the small pieces which fall off in a special container. 

Cutting path determination problem 

The plate is approx 10 cm wide in diameter, with a border waste  
of 0.5 mm. The copper string speed is constant 1.5 mm/min. 
A plate completely filled takes about 20 hours to be completely cut. 



The Stacker Crane Problem 
Frederickson, Hecht & Kim  (1978)  

A crane must start from an initial position, perform a set of 
movements, and return to the initial position. The objective is to 
schedule the movements of the crane so as to minimize the total 
cost. 



Meter Reading 

First work: STERN & DROR (1979) 
 Beersheva (Israel) 
     8 Zones (1 zone consists of 42 nodes and 62 

edges) 
o Important reduction: from 24 to 15 tours in 1 zone  
o Estimated saving: 40% in 1 zone. 
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Each meter has a RFID (Radio Frequency IDentification) tag. 
A RFID reader can read the data of each meter located closer than 
a given distance r . 

Meter Reading 
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Nowadays, the service (meter reading) do not consist of traversing 
a given street, but a close-enough street to the customer 

Meter Reading 

Shuttleworth, Golden, Smith, and Wasil (2007) 
Ha, Bostel, Langevin y Rousseau (2014) 
Ávila, C., Plana & Sanchis (2015) 

Each customer has associated a set of close-enough street 
segments. The goal is to traverse at least one of these streets for 
each customer, at minimum cost 



Inspection of 3D structures by 
teleoperated robots 

 

A climbing robot has to inspect a set 
of elements of a 3-D structure  
optimizing its energetical 
consumption 



(RObot Multifuncional Autoportante)  Area de Ingeniería de Sistemas y Automática de la Univ. Carlos III 

 Autonomy: 3 hours 
 Weight: 75 Kg 
 Intelligent control 

system (CPU, Ethernet 
via radio, TV camera, 
laser telemeter) on 
board 
 

ROMA Robot 



Modelling the problem 

We want to find the optimal route for the robot: 
 Minimizing its consumption  
 Maximizing its autonomy 

What is needed? 
Information on the robot energy consumption: 
 Cost of traversing an element (asimmetry) 
 Cost of traversing a junction (asimmetry) 

     Modelling the junctions  



Modelling junctions 



Modelling junctions 



Modelling junctions 



Cutting plotter 

Sticker contour shapes  



black arrows: edges to be traversed 
      (cut out)  

red arrows: non-required edges 
    (knife-up moves) 

Cutting plotter 

The design consists of a number of  
'vectors‘  that need to be cut out  
with the knife down.  

Up time: 82564.29 
Down time: 204545.60 



Cutting plotter 

For some material types, there is 
also a preferred or even obliged  
movement direction for these vectors 
(preference to pull the material  
instead of pushing it). 
This is the 'windy' aspect. 

Up time: 48520.55 
Down time: 204545.60 



Arc Routing Applications  
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 Delivery of newspapers to subscribers,  
 postal mail delivery,  
 pickup of household waste, .... 

In urban areas, there are often thousands of points to 
be serviced along a subset of street segments. 

These  problems can be formulated as arc routing 
problems with a drastic reduction of its size. 

Node aggregation 
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Eulerian graphs 
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A Eulerian tour is a closed walk (tour) that traverses each 
edge of the graph exactly once. 
A Eulerian graph is one for which there is a Eulerian tour.  

An undirected connected graph G=(V,E) is Eulerian if and 
only if all their vertices have even degree (even graph) 
(Euler 1736, Hierholzer 1873) 

An undirected connected graph G=(V,E) is Eulerian if and 
only if it is the union of disjoint cycles. 
(Veblen 1912) 



Eulerian graphs 
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Step 2. If all edges have been traversed, stop. 

Step 3. Trace another cycle starting from an un-traversed edge 
incident to a node of the cycle. Merge the two cycles into one. 
Go to Step 2. 

Hierholzer’s algorithm for finding a Eulerian tour,  O(|E|) 

Step 1. Starting from an arbitrary node v, gradually traverse a cycle 
by following untraversed edges until returning to v. 



Traversing a Eulerian graph 
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(1) 
(2) 

v 



Traversing a Eulerian graph 

43 



Let G=(V,E) be a connected undirected graph with costs ce ≥ 0 
associated with its edges. 
CPP: To find a minimum length tour traversing every edge at 
least once. 

If G is Eulerian, the graph itself is the solution to the Chinese 
Postman Problem. 

Otherwise, at least one of its edges will be traversed more 
than once. Therefore, we have the following equivalent 
augmentation problem: 
Find a set of edge copies with minimum total cost such that, 
when added to G, G becomes an even (Eulerian) graph. 

The Chinese Postman Problem 
Guan, 1962 



CPP: Resolution 

Christofides, 1973 
Edmonds and Johnson, 1973 



Pictures 
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Graph G 

Odd-degree 
vertices 

CPP: Resolution 
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Shortest paths among 
odd-degree nodes 
 

CPP: Resolution 
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CPP: Resolution 

Minimum Cost Perfect Matching 

Cost = 7+24+11=42 
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CPP: Resolution 
Duplicate shortest paths  

between odd nodes 
 

Graph G’. It is Eulerian and  
corresponds to the optimal  
solution of the CPP on G.  



CPP: Formulation  

xe=copies of e to be added to G  
in order to obtain a Eulerian graph. 

        CPP Formulation  
(Edmonds & Johnson, 1973) : 

Minimize ∑ cexe 

x(δ(v)) ≡ d(v)  (mod. 2), ∀v∈V 
xe ≥ 0 and integer, ∀e∈E 

Parity 
Non linear!! 

x(δ(v)) ≡ d(v)   is equivalent to  x(δ(v)) + d(v) = 2 zv, zv ≥1 and integer 



CPP: Formulation  

xe=copies of e to be added to G  
in order to obtain a Eulerian graph. 

        CPP Formulation  
(Edmonds & Johnson, 1973) : 

Minimize ∑ cexe 
x(δ(S)) ≥ 1, ∀S⊂V such that |δ(S)| is odd 
xe ≥ 0,         ∀e∈E 

Full polyhedral description 

exponential number !! 



CPP: Odd cut inequalities 

S SV \

x(δ(S)) ≥ 1, ∀S such that |δ(S)| is odd 

Exact separation in polynomial time (Padberg and Rao, 1982) 

Parity is a fundamental issue in arc routing 

If an edge cutset contains an odd  
number of edges, at least one extra  
traversal will be needed 



Eulerian directed graphs  

A strongly connected directed graph is Eulerian iff it is symmetric 
(G is symmetric if ∀i∈V,  # arcs entering at i = # arcs leaving i) 
 

The parity of the vertices is a 
necessary but not a sufficient 
condition for a directed graph to be 
Eulerian 

G=(V,A) strongly connected  

König (1936): 



DCPP: Resolution  

xij=copies of (i,j)  
to be added to G  
in order to obtain 
a Eulerian graph. 

i 

j 

d+(j)=2 d-(j)=1  demand(j)= tj =d+(j)-d-(j) 
d+(i)=1 d-(i)=3  supply(i)= si =d-(i)-d+(i) 

0

,

≥

∈∀=

∈∀=

∑

∑

∑

∈

∈

∈∈

ij

i
Tj

ij

j
Si

ij

TjSi
ijij

x

Sisx

Tjtx

xcMin

Polinomially solvable 

Liebling, 1970 
Edmonds & Johnson, 1973 



Eulerian mixed graphs 

G=(V,E,A) is Eulerian if 
    G is even, and 
    G is symmetric 
     

The parity of the vertices degree is 
again a necessary but not sufficient 
condition for a mixed graph to be 
Eulerian 

Are these conditions also necessary for G to be Eulerian ?  

G=(V,E,A) strongly connected  

Non Eulerian  



  

Obviously not, as the following figure shows: 

Then, is there a necessary and sufficient condition  
for a mixed graph to be Eulerian ? 

Eulerian mixed graphs 



    G=(V,E,A) strongly connected is Eulerian iff 
    G is even, and 
    G is balanced, i.e. ∀S⊂V, 
    (arcs leaving S)-(arcs entering S) ≤ (edges between S and V\S) 
  

Ford and Fulkerson (1962) 

Non balanced Balanced 

Eulerian mixed graphs 



Pictures 



Nobert and Picard (1996) proposed a polynomial-time 
algorithm that finds a violated balanced inequality if it 
exists. 

Eulerian mixed graphs 

How can we check if a graph is balanced? 
 



NP-hard (Papadimitriou,1976) 

Polynomially solvable if G is even  (Edmonds & Johnson,1973) 

The Mixed Chinese Postman  
Problem (MCPP)  



MCPP: Heuristic algorithms 

 The Edmonds and Johnson’s exact algorithm for the 
case when G is even (called Even MCPP Algorithm) is 
the basis for two heuristics for the general case 
suggested by Edmonds & Johnson (1973) and 
developed and improved by Frederickson (1979): 
 

 Algorithm MIXED1 would be equivalent to first 
transforming G into an even graph and then applying the 
Even MCPP Algorithm. 



MCPP: Heuristic algorithms 

 Algorithm MIXED2 can be considered as the reversed version 
of MIXED 1. It first solves a minimum cost flow problem in G 
to obtain a symmetric graph. Then, it solves the (undirected) 
CPP to finally obtain an even and symmetric graph. 

 MIXED1 and MIXED2, have a worst case ratio of 2, but the 
Mixed Algorithm, which consists of applying both heuristics 
and select the best tour obtained, has a worst case ratio of 
5/3. 

 Raghavachary & Veerasamy (1998) proposed a modification 
to the Frederickson’s Mixed Algorithm with a better worst 
case ratio of 3/2. 



MCPP: Exact methods 

64 

Christofides, Benavent, Campos, C. & Mota (1984) 

Nobert & Picard (1996) 
C., Romero & Sanchis (2003) 
C., Mejía & Sanchis (2005) 

C., Plana, Oswald, Reinelt, Sanchis (2012) 

Branch & Bound based on Lagrangean relaxation 

Branch & Cut based on an integer formulation 

Solve the MCPP as a special case of the Windy Postman 
Problem. 
Branch & Cut capable of solving 17 out of 24 instances with 
|V|=3000, 1097≤|A| ≤6742 and  1992≤|E| ≤6799 in less than 15 
minutes. 
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Routing problems on windy graphs 

Undirected, directed and mixed  
graphs can be considered special 
cases of windy graphs.  
 
Then, windy ARPs generalize the  
corresponding ARPs on  
undirected, directed and mixed  
graphs. 

2 3 

∞ 
∞ 2 

3 

A “windy” graph is an undirected graph  
with asymmetric costs.  



The Windy Postman Problem 

2 

5 

1 

3 

Minieka (1979)  

Given a windy graph G=(V, E), the 
WPP entails finding a minimum 
cost tour traversing all the edges in 
G at least once. 

(that the cost of traversing an edge is the same 
for either direction) “is hardly a good 
assumption when one direction might be uphill 
and the other downhill, when one direction 
might be with the wind and the other against 
the wind or when fares are different depending 
on direction”. 
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WPP is NP-hard  
(Brucker 1981 and Guan 1984) 

Although some special cases can 
be solved in polynomial time:  

-When the two orientations of every cycle C in G have the 
same cost (Guan 1984), and 
-When G is even (Eulerian) (Win 1987 ) 
 

The Windy Postman Problem 



 Heuristic based on the solution of a minimum cost matching 
and then on a minimum cost flow problem (Win, 1989) 
 
 

 Heuristic that interchanges the two steps above  (Pearn & Li, 
1994) 
 

 LP-based heuristics (Win, 1987) 
 
 

Worst case ratio = 2 

The Windy Postman Problem 

Worst case ratio = 2 



WPP formulation 

xij = # of times (i,j) is traversed from i to j 

   Min ∑(i,j)∈E(cijxij+cjixji) 

      xij+xji ≥ 1, ∀(i,j)∈E  (1) 

    ∑(i,j)∈δ(i)xij = ∑(i,j)∈δ(i)xji, ∀i∈V (2) 

       xij, xji ≥ 0, ∀(i,j)∈E   (3) 
 xij, xji integer, ∀(i,j)∈E  (4) 

Win (1987), Grötschel & Win (1992) 



WPP exact algorithms 

Win (1987), Grötschel & Win (1988): 
Cutting-plane algorithm: solved 31/36 instances with 
|V|∈(52,264) and |E|∈(78,479) 
 
C., Plana, Sanchis (2006) 
B&C 
 
C., Oswald, Plana, Reinelt, Sanchis (2011): 
B&C: solved 99/120 instances with |V|∈(500,3000) and 
|E|∈(813,9085) 



The Rural Postman Problem 

GR=(V,ER) non connected 

Orloff (1974)  

NP-hard (easy transformation from the TSP) Lenstra & 
Rinnooy Kan (1976) 

Polynomially solvable if GR is connected.  
 
Its difficulty increases with the number of  
R-sets.  



The Rural Postman Problem 
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Equivalent augmentation problem 
 
      Add to GR a set of edge copies  
      with total minimum cost such  
      that the resulting graph is  
      connected and even. 



The Rural Postman Problem 
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Feasible solution 



C. & Sanchis, 1994 

      Minimize ∑ cexe 

x(δ(S)) ≥ 2,     ∀S⊂V, δR(S)=∅ 

x(δ(i)) ≡ | δR(i) | (mod. 2),  ∀i∈V  

xe ≥ 0 and integer   ∀e∈E 

RPP formulation 

xe=copies of e to be added to GR in order to obtain a Eulerian graph 

where δR(S) = δ(S) ∩ ER 



The General Routing Problem 
 

• Required links (arcs, edges) 

• Required vertices 

• On undirected graphs  (GRP) 

• On directed graphs (DGRP) 

• On mixed graphs (MGRP) 

• On “windy” graphs (WGRP) 

1 3 

4 

2 

Orloff (1974)  



 Special Cases 

 Chinese Postman Problem (CPP) 

 No required vertices (VR = ∅) 

 All links are required (ER = E)  

 Rural Postman Problem (RPP) 

 No required vertices (VR = ∅) 

 Graphical TSP (GTSP) 

 No required links (ER = ∅) 
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solves optimally  

C., Plana & Sanchis (2007) 

Branch-and-cut algorithm for the WGRP (and special cases) 

 
 
 
 
 
 
GRP exact methods 



The Capacitated Arc Routing 
Problem 
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Golden & Wong (1981) 



The Capacitated Arc Routing 
Problem 
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Heuristic methods for the CARP 
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Many heuristics and metaheuristics have been 
proposed for the CARP and its many variants. 
 
Prins (2014), and 
 
Muyldermans & Pang (2014) 
 
are two excellent surveys on the topic. 



Exact methods for the CARP 
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 Branch-and-bound: Hirabayashi, Saruwatari & Nishida (1992) 

 Transformation to node routing 

 Branch-and-cut: Baldacci & Maniezzo (2006) 

 Branch-and-price: Longo, Poggi de Aragao & Uchoa (2006) 

 Cut-and-column generation: Bartolini, Cordeau & Laporte (2011) 

 Two-index formulation: Belenguer (1990), Belenguer & Benavent (1998) 

 One-index formulation: Letchford (1997), Belenguer & Benavent (1998,2003) 

 Branch-and-price: Bode & Irnich (2012), Martinelli, Pecin, Poggi de Aragao & 
Longo (2011) 

See Belenguer, Benavent & Irnich (2014) 



Two-index formulation 
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Belenguer & Benavent (1998) 



Two-index formulation 
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connectivity 

parity 

capacity 

assignment 



Two-index formulation 
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• The branch-and-cut based on this formulation was able to solve 
only small size instances. 

• The lower bound obtained with the linear relaxation is very bad 
if aggregate constraints (R-odd cut and capacity) are not used. 

• The formulation has a high degree of symmetry: the vehicle 
routes can be permuted leading to different integer solutions 
that are in fact identical. Many nodes of the branch-and-cut tree 
are identical. 



One-index formulation 

85 

Aggregate capacity 

R-odd cut 



One-index formulation 
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NP-complete problem 

The one-index formulation allows non-feasible integer solutions 

Bin Packing Problem: 



One-index formulation 
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Benchmark sets of instances 

Golden, Dearmon & Baker (1983) 

Benavent, Campos, C. & Mota (1992) 

Li & Eglese (1996) 

Belenguer & Benavent (2003) Cutting plane algorithm proposed by   



One-index formulation 

88 

gdb    #optimality proofs    14/23,    average gap           0.14% 

val    #optimality proofs     22/34,    average gap            0.41% 

egl    #optimality proofs      0/24,    average gap             2.40% 

Can be used to prove the optimality of a heuristic solution  
or to provide a guarantee of its quality.  

Ahr (2004) and Martinelli, Poggi de Aragão & Subramaniam (2013) 
propose exact algorithms and dual ascent methods for separating 
capacity constraints that improve the lower bound obtained in some 
instances, but at a large computational effort. 

Belenguer & Benavent (2003) 



Set-Covering formulations 
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The one-index formulation provides good lower bounds and is very 
fast, but no enumeration method has been implemented from it. It 
seems a very difficult task. 

On the other hand the two-index formulation has the drawback of 
its high degree of symmetry, thus producing huge branch-and-cut 
trees. 

The alternative is column generation based on set-partitioning 
or set-covering formulations 
 



Set-Covering formulations 

90 



Set-Covering formulations 

91 

The linear relaxation of SCF is solved by column generation:  
columns (tours) are dynamically generated as needed. 

The integer program is solved by Branch-and-price 



Cut-and-column generation 

92 

Gómez-Cabrero, Belenguer & Benavent (2005) 

 
 

Column-
generation 

Cut-and-
column-

generation 

Cutting-plane 
generation * 

gdb 4.92 0.07 0.13 

val 7.21 0.39 0.66 

egl - 2.36 2.69 
 

One of the drawbacks of 
the method is that the 
sparseness of the original 
graph is lost when solving 
the subproblem 

Letchford & Oukil (2009) proposed a method to solve the  
subproblem that works on the original graph, thus avoiding  
this problem. Unfortunately they do not add cutting planes 
 



Cut-first branch-and-price second 
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Bode & Irnich (2012)  

They develop an exact method that works on the original sparse 
graph and integrates the cut-and-column generation into branch-
and-price scheme 

They add to the Set Covering model: 

Non-negative reduced costs are obtained 

Adapt the labeling algorithm of Letchford & Oukil (2009) 
that works on the original graph 



Cut-first branch-and-price second 
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gdb : all 23 instances were optimally solved 

maximum CPU time: 4 hours 

val : all 34 instances solved 

egl : 6 out of 24 instances optimally solved 

Bode & Irnich (2012)  



Column generation on the GVRP 
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gdb : all 23 instances were optimally solved 

val : 28 out of 34 instances solved 

egl : 10 out of 24 instances optimally solved 

Bartolini, Cordeau & Laporte (2013)  

The method by BCL, based on a transformation of the CARP 
into a Generalized Vehicle Routing Problem, shows slightly 
better results. 

Better lower bounds at the root node 
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Arc routing problems with profits 

 Routing problems deal with the design of routes (for one or 
more vehicles). 
 In most of these problems the objective is to service a 
given set of customers, with total minimum cost. 
 In others, the objective is to select some customers with 
maximum profit from a set of potential customers and to 
service them. 
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“Nowadays it is more and more frequent that demands for 
transportation services are posted on the web, usually in 
specific databases, and the carriers can pick up these 
demands and offer their service to some of these 
customers, possibly in the framework of an electronic 
auction. The carrier has to select within a set of potential 
customers those which are most convenient for him. In an 
electronic auction, the carrier will put a bid on these 
potential customers”. 
(Archetti, Hertz and Speranza, 2005) 
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Arc routing problems with profits 



In Feillet, Dejax & Gendreau (2005) these problems are called 
routing problems with profits and a classification is proposed: 
 Prize-collecting problems: there is a lower bound on the total 

prize collected and the objective is to minimize the total cost. 
 Profitable problems: the objective is to maximize the 

difference between the collected profits and the routing costs. 
 Orienteering problems: there is an upper bound on the cost or 

length of the route and the collected profits are maximized (with 
multiple vehicles, they are called team orienteering problems. 

Archetti and Speranza (2014) is an excellent survey of Arc Routing 
Problems with Profits. 
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Arc routing problems with profits 
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Problem Proposed  by Studied by 

Maximum Benefit CPP 
Special cases: 
Privatized RPP 
Prize-collecting RPP 

Malandraki & Daskin (1993) Pearn & Wang (2003) 
Pearn & Chiu (2004) 
Aráoz et al. (2006, 2009) 
C. et al. (2013) 

Profitable DRPP 
Profitable WRPP 
Profitable Mixed CARP 

Archetti et al.  (2014) 
Schaeffer et al. (2014) 
Benavent et al. (2014) 

Colombi and Mansini (2014) 
Ávila, C., Plana, Sanchis (2015) 

Profitable Arc Tour problem Feillet, Dejax, Gendreau (2005)  

Undirected CARP with profits Archetti et al. (2010) 
 

Zachariadis & Kiranoudis (2011) 

Clustered Prize-collecting ARP 
Windy CPARP 

Aráoz et al. (2009)  
C. et al. (2011) 

Team orienteering ARP 
Orienteering ARP 

Archetti et al. (2015a, b) 
Archetti et al. (2015c) 
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Arc routing problems with profits 

• In Archetti, C., Plana, Sanchis and Speranza (2015a, 2015b, and 
2015c) the Team Orienteering ARP and the single vehicle version 
(the Orienteering ARP) are studied. 

• The study was motivated by a real life application related to 
carriers making auctions on the web for transportation services. 

•  A transportation service is represented by an arc, and consists of 
reaching a node with an empty truck, filling the truck with load, 
traversing the arc and downloading the truck completely. 

• The carrier has a set of regular customers which need to be 
served. 

• The carrier has a vehicle or a fleet of vehicles with limited traveling 
time and looks for additional customers to fully use the traveling 
time of the vehicles. 
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Given a set of regular customers (green arcs) and given a set of 
potential customers (red arcs), 
we want to select a subset of potential customers with maximum 
profit that can also be serviced within the vehicle time limit. 

The Orienteering ARP 



103 

The Orienteering ARP 

The Orienteering Arc Routing Problem, OARP, consists of 
finding a route starting and ending at the depot, such that 
 
• its cost or time is no greater than a time limit Tmax, 
• all the arcs associated with required customers are 

traversed at least once, and 
• the sum of the profits of the traversed arcs associated 

with the potential customers is maximum. 
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The Team Orienteering ARP 
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The Team Orienteering Arc Routing Problem, TOARP, is 
defined as finding K routes starting and ending at the 
depot, such that 
 
• each route is no greater than a time limit Tmax, 
• all the arcs associated with required customers are 

traversed at least once, and 
• the sum of the profits of the traversed arcs associated 

with the potential customers is maximum. 

The Team Orienteering ARP 
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B&C for the OARP 

• Run with a time limit of 1 hour. 
• The instances have 1000 ≤ |V| ≤ 2000 and 7000 ≤ |A| ≤ 14000. 
• 79 out of 80 instances with 1000 vertices and 7000 arcs were 

solved optimally. 
• 76 out of 80 instances with 1500 vertices and 10500 arcs were 

solved optimally. 
• 64 out of 80 instances with 2000 vertices and 14000 arcs were 

solved optimally. 
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B&C for the TOARP 

• Run with a time limit of 1 hour. 
• The instances have 11 ≤ |V| ≤ 100, 42 ≤ |A| ≤ 846 and K=2,3,4. 
• 204 out of 207 instances with K=2 were solved to optimality. 
• 188 out of 207 instances with K=3 were solved to optimality. 
• 157 out of 207 instances with K=4 were solved to optimality. 
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ARPs with aesthetic constraints 

Real world applications often require other constraints that must 
be added to the basic ARP models.  

Examples of such situations arise when workloads need to be 
equitably distributed among the vehicles, or different vehicle 
routes have to be constrained to separated geographical regions. 

Ghiani et al. (2014) summarize strategical and tactical issues 
involving these type of constraints in waste collection problems. 

Mourgaya & Vanderbeck (2007) and Muyldermans et al. (2002) 
point out that too many intersections of the service areas of 
different vehicles can complicate the activities to be held in a 
region. 
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ARPs with aesthetic constraints 

Kim, Kim & Sahoo (2006) and Poot, Kant & Wagelmans (2002) 
report that solutions with an excessive number of vehicle 
croosovers tend to be rejected by practitioners. 

Kim et al. also remark that the overlapping of service areas is 
strongly related to the intersection of the vehicle routes. The 
number of intersections may decrease if each vehicle service area 
is concentrated in a geographical region.  

How can we define “nice” regions (sets of arcs and/or edges)? 

Besides being separated and workload balanced, their shape 
should have other “nice” characteristics, like connectivity, non-
overlapping and “compacteness”. 
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ARPs with aesthetic constraints 

Compactness is one of the most frequently mentioned 
characteristics, although not always is clearly defined.  

Furthermore, the meaning of compactness slightly differs from 
author to author. It uses to be associated with:  

a) zones shapes as close as possible to circles, squares or 
rectangles, 

b) geographically or visually compact zones, or 

c) the proximity between the demand entities in the same zone. 
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ARPs with aesthetic constraints 
Constantino, Gouveia, Mourao, Nunes (2015) 

(a) Optimal MCARP solution: routes overlapping, not “nice” regions  
served by each route and disconnected sequence of required links  
serviced by each vehicle. 
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ARPs with aesthetic constraints 
Constantino, Gouveia, Mourao, Nunes (2015) 

(b) Connectivity solution: Optimal MCARP solution after adding  
constraints forcing the required links in each route to define a  
connected subtgraph. It still shows routes that overlap and spread 
in the collection zone. 
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ARPs with aesthetic constraints 
Constantino, Gouveia, Mourao, Nunes (2015) 

(c) BCARP (bounded overlapping MCARP) solution: This model  
contains a constraint based on a measure of the non-overlapping of 
the routes (in terms of the number of nodes that are common to the  
required links serviced by the different routes) 
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ARPs with aesthetic constraints 





Conclusions 
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 The Chinese Postman, the Rural Postman and General 
Routing problems can be optimally solved for large 
instances in the undirected, directed, mixed and windy 
cases. 

 Arc Routing problems with several vehicles, as the CARP, 
are much more difficult. 

 There is no need for sophisticated heuristics for solving 
most ARPs with a single vehicle. However, they are 
needed for ARPs with several vehicles. 



Conclusions 
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 New methods (and ideas) are needed to solve the CARP 
and other ARPs with several vehicles. 

 Models for arc routing problems incorporating profits 
and/or aesthetic constraints like balanced workload and 
non-overlapping will be the subject of study in the next 
years.  
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 Many thanks for your attention !! 


	Arc Routing Problems: History, Applications and Perspectives
	Contents
	Königsberg’s Bridge Problem
	Número de diapositiva 4
	Número de diapositiva 5
	Número de diapositiva 6
	The Chinese Postman Problem
	The Chinese Postman Problem
	The Chinese Postman Problem
	Pictures 
	Arc Routing Problems
	References
	Contents
	Número de diapositiva 14
	Street cleaning and garbage collection
	Street cleaning and garbage collection
	Snow and Ice control
	Snow and Ice control
	Snow and Ice control
	Snow and Ice control
	Snow and Ice control
	Pierce Point Minimization in Flame Cutting
	Cutting path determination problem
	Cutting path determination problem
	The Stacker Crane Problem
	Meter Reading
	Meter Reading
	Meter Reading
	Inspection of 3D structures by teleoperated robots
	(RObot Multifuncional Autoportante)��Area de Ingeniería de Sistemas y Automática de la Univ. Carlos III
	Modelling the problem
	Modelling junctions
	Modelling junctions
	Modelling junctions
	Cutting plotter
	Número de diapositiva 36
	Número de diapositiva 37
	Arc Routing Applications 
	Contents
	Eulerian graphs
	Eulerian graphs
	Traversing a Eulerian graph
	Traversing a Eulerian graph
	The Chinese Postman Problem
	CPP: Resolution
	Pictures
	CPP: Resolution
	CPP: Resolution
	CPP: Resolution
	CPP: Resolution
	CPP: Formulation	
	CPP: Formulation	
	CPP: Odd cut inequalities
	Eulerian directed graphs	
	DCPP: Resolution	
	Eulerian mixed graphs
		
	Eulerian mixed graphs
	Pictures
	Eulerian mixed graphs
	The Mixed Chinese Postman �Problem (MCPP)	
	MCPP: Heuristic algorithms
	MCPP: Heuristic algorithms
	MCPP: Exact methods
	Routing problems on windy graphs
	The Windy Postman Problem
	The Windy Postman Problem
	Número de diapositiva 68
	WPP formulation
	WPP exact algorithms
	The Rural Postman Problem
	The Rural Postman Problem
	The Rural Postman Problem
	RPP formulation
	The General Routing Problem�
	 Special Cases
	������GRP exact methods
	The Capacitated Arc Routing Problem
	The Capacitated Arc Routing Problem
	Heuristic methods for the CARP
	Exact methods for the CARP
	Two-index formulation
	Two-index formulation
	Two-index formulation
	One-index formulation
	One-index formulation
	One-index formulation
	One-index formulation
	Set-Covering formulations
	Set-Covering formulations
	Set-Covering formulations
	Cut-and-column generation
	Cut-first branch-and-price second
	Cut-first branch-and-price second
	Column generation on the GVRP
	Contents
	Arc routing problems with profits
	Arc routing problems with profits
	Arc routing problems with profits
	Número de diapositiva 100
	Número de diapositiva 101
	Número de diapositiva 102
	Número de diapositiva 103
	Número de diapositiva 104
	Número de diapositiva 105
	Número de diapositiva 106
	Número de diapositiva 107
	Contents
	ARPs with aesthetic constraints
	ARPs with aesthetic constraints
	ARPs with aesthetic constraints
	ARPs with aesthetic constraints
	ARPs with aesthetic constraints
	ARPs with aesthetic constraints
	ARPs with aesthetic constraints
	Conclusions
	Conclusions
	Número de diapositiva 118

