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The Stable Set Problem

Given a graph G = (V , E)

A stable set S is a subset of V s.t. if u, v ∈ S ⇒ {u, v} /∈ E .

Given w ∈ QV
+, the Stable Set Problem consists in finding a

stable set of G of maximum weight.

The Stable Set Polytope, denoted by STAB(G), is the
convex hull of the incidence vectors of the stable sets of G.

The Stable Set problem is NP-hard
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The Stable Set Problem on Claw-Free Graphs

A Claw is the following graph:

The Stable Set Problem is polynomial time solvable on
claw-free graphs
⇒ Minty 81
⇒ (Tamura and Nakamura 02, Schrijver 03)
⇒ Oriolo, Pietropaoli, Stauffer 08

STAB(G) IS NOT KNOWN !!
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The Structure of Claw-Free Graphs (Chudnovsky & Seymour ’04 )

Connected
claw-free graphs
with no 1-joins
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The Structure of Claw-Free Graphs (Chudnovsky & Seymour ’04 )

•α ≤ 2, Clique neughborhood ineq.es
(Cook ’87)

•α ≤ 3, Roots characterization
(Pecher & Wagler ’06)
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Strips and
strip compositions:
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XX strips

An XX-strip
is the graph:
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An XX-strip
is the graph:
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An XX-graph is a composition of fuzzy linear interval strips and
XX-strips.
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Gears and gear composition

A gear is the graph:
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• An edge {v1, v2} of a given graph H = (VH , EH) is said to be simplicial

if K1 = N(v1) \ {v2} and K2 = N(v2) \ {v1} are two nonempty cliques of H
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Gears and gear composition

A gear is the graph:

• An edge {v1, v2} of a given graph H = (VH , EH) is said to be simplicial

if K1 = N(v1) \ {v2} and K2 = N(v2) \ {v1} are two nonempty cliques of H

• The composition of a graph H = (VH , EH) and a gear B

along the simplicial edge {v1, v2} ∈ EH is the following geared graph G(H, B, e):
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G-extendable and geared inequalities

Let H be a graph with a simplicial edge e = v1v2.

An inequality (π, π0) which is valid for STAB(H) is said to be
g-extendable (with respect to e) if πv1 = πv2 = λ > 0 and it is not
the inequality xv1 + xv2 ≤ 1.

Let B = (VB , EB) be a gear and (π, π0) be g-extendable with
respect to e. Then the inequalities

⋄
∑

i∈VH\{v1,v2}

πi xi + λ
∑

i∈VB\{h1,h2}

xi + 2λ(xh1 + xh2) ≤ π0 + 2λ

⋄
∑

i∈VH\{v1,v2}

πi xi + λ
∑

i∈VB\A

xi ≤ π0 + λ

where A ∈ {{b1, c}, {b2, c}, {d1, a}, {d2, a}, {a, c}}

are called geared inequalities generated by (π, π0)
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G-liftable and g-lifted inequalities

Let He be the graph obtained from H by subdividing the simplicial
edge e with a new node t.

An inequality (π, π0) which is valid for STAB(He) is said to be
g-liftable (with respect to e) if πv1 = πv2 = πt = λ > 0.

Let B = (VB , EB) be a gear and (π, π0) be g-liftable with respect
to e. Then the inequalities

⋄
∑

i∈VH\{v1,v2}

πi xi + λ
∑

i∈VB

xi ≤ π0 + λ,

⋄
∑

i∈VH\{v1,v2}

πi xi + λ
∑

i∈VB\A

xi ≤ π0

where A ∈ {{b1, c, b2, h1, h2}, {d1, a, d2, h1, h2}}

are called g-lifted inequalities generated by (π, π0)
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The stable set polytope of a geared graph

Theorem Let G = (H, BY , e) be a geared graph. Then the
stable set polytope STAB(G) is described by the following
linear inequalities:

• clique-inequalities,

• (lifted) 5-wheel inequalities,

• geared inequalities associated with g-extendable facet
defining inequalities of STAB(H),

• g-lifted inequalities associated with g-liftable facet defining
inequalities of STAB(He),

• facet defining inequalities of STAB(H),
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GH graphs

Given a graph H, define E∗
H as the set of its simplicial edges, and let a

g-operation on e ∈ E∗
H be either a gear composition or an edge

subdivision applied on e. A graph G belongs to GH if and only if

either G = H,

or G = (L, B, e), where L ∈ GH , B is a gear, and e ∈ E∗
H ∩ EL, i.e.,

e is a simplicial edge of H on which no g-operations has been
applied,

or G = Le, where L ∈ GH and e ∈ E∗
H ∩ EL.
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G-perfect graphs

A facet defining inequality (γ, γ0) ∈ G if and only if it is (the sequential
lifting of)

either a rank inequality,

or a 5-wheel inequality,

or a geared or a g-lifted inequality associated with an inequality
in G.

A graph G is G-perfect if and only if STAB(G) can be described by
inequalities in G}.

Theorem. Let H be a graph and E∗
H the set of its simplicial edges.

If H and HF are G-perfect for any F ⊆ E∗
H , then every graph

G ∈ GH is G-perfect.
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XX strips & gears
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c
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b2

u13 can be added separately by a proper linear strip

u11 and u12 produce only sequential lifting of geared or g-lifted
inequalities
(+ two new g-lifted inequalities that are isomorphic to He)

XX-strip composition and gear composition are equivalent
(provided that the simplicial edge {v1, v2} is such that
N(K1 ∩ K2) ⊆ N(K1) ∪ N(K2))
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Theorem. XX-graphs are G-perfect.


