The Stable Set Polytope of "Almost" All Claw Free Graphs

Paolo Ventura IASI-CNR

JOINT WORK WITH: A. Galluccio and C. Gentile

Aussois - 2009

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

The Stable Set Problem

Given a graph G = (V, E)

- A stable set S is a subset of V s.t. if $u, v \in S \Rightarrow \{u, v\} \notin E$.
- Given w ∈ Q^V₊, the Stable Set Problem consists in finding a stable set of G of maximum weight.
- The Stable Set Polytope, denoted by STAB(G), is the convex hull of the incidence vectors of the stable sets of G.

The Stable Set Problem

Given a graph G = (V, E)

- A stable set S is a subset of V s.t. if $u, v \in S \Rightarrow \{u, v\} \notin E$.
- Given w ∈ Q^V₊, the Stable Set Problem consists in finding a stable set of G of maximum weight.
- The Stable Set Polytope, denoted by STAB(G), is the convex hull of the incidence vectors of the stable sets of G.

The Stable Set Problem

Given a graph G = (V, E)

- A stable set S is a subset of V s.t. if $u, v \in S \Rightarrow \{u, v\} \notin E$.
- Given w ∈ Q^V₊, the Stable Set Problem consists in finding a stable set of G of maximum weight.
- The Stable Set Polytope, denoted by STAB(G), is the convex hull of the incidence vectors of the stable sets of G.

Given a graph G = (V, E)

- A stable set S is a subset of V s.t. if $u, v \in S \Rightarrow \{u, v\} \notin E$.
- Given w ∈ Q^V₊, the Stable Set Problem consists in finding a stable set of G of maximum weight.
- The Stable Set Polytope, denoted by STAB(G), is the convex hull of the incidence vectors of the stable sets of G.

Given a graph G = (V, E)

- A stable set S is a subset of V s.t. if $u, v \in S \Rightarrow \{u, v\} \notin E$.
- Given w ∈ Q^V₊, the Stable Set Problem consists in finding a stable set of G of maximum weight.
- The Stable Set Polytope, denoted by STAB(G), is the convex hull of the incidence vectors of the stable sets of G.

The Stable Set Problem on Claw-Free Graphs

A Claw is the following graph:

- The Stable Set Problem is polynomial time solvable on claw-free graphs
 - \Rightarrow Minty 81
 - \Rightarrow (Tamura and Nakamura 02, Schrijver 03)
 - \Rightarrow Oriolo, Pietropaoli, Stauffer 08

STAB(G) IS NOT KNOWN !!

The Stable Set Problem on Claw-Free Graphs

A Claw is the following graph:

- The Stable Set Problem is polynomial time solvable on claw-free graphs
 - \Rightarrow Minty 81
 - \Rightarrow (Tamura and Nakamura 02, Schrijver 03)
 - ⇒ Oriolo, Pietropaoli, Stauffer 08

STAB(G) IS NOT KNOWN !!

The Stable Set Problem on Claw-Free Graphs

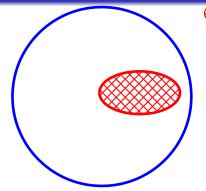
A Claw is the following graph:

- The Stable Set Problem is polynomial time solvable on claw-free graphs
 - \Rightarrow Minty 81
 - \Rightarrow (Tamura and Nakamura 02, Schrijver 03)
 - ⇒ Oriolo, Pietropaoli, Stauffer 08

STAB(G) IS NOT KNOWN !!

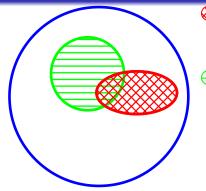
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Connected claw-free graphs with no 1-joins



• $\alpha \leq$ 2, Clique neughborhood ineq.es (Cook '87)

• $\alpha \leq$ 3, Roots characterization (Pecher & Wagler '06)

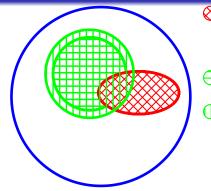


 $\circ \alpha \leq 2$, Clique neughborhood ineq.es (Cook '87)

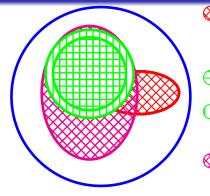
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $\alpha \leq$ 3, Roots characterization (Pecher & Wagler '06)

Line graphs Edmonds ineq.es

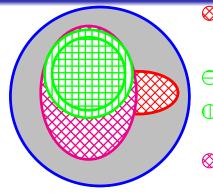


- • $\alpha \leq$ 2, Clique neughborhood ineq.es (Cook '87)
 - • $\alpha \leq$ 3, Roots characterization (Pecher & Wagler '06)
 - Line graphs Edmonds ineq.es
-) Comp. of fuzzy linear interval strips Edmonds ineq.es (Chudnovsky & Seymour '04)



- • $\alpha \leq$ 2, Clique neughborhood ineq.es (Cook '87)
 - • $\alpha \leq$ 3, Roots characterization (Pecher & Wagler '06)
 - Line graphs Edmonds ineq.es
-) Comp. of fuzzy linear interval strips Edmonds ineq.es (Chudnovsky & Seymour '04)
 - Fuzzy circular interval graphs Clique family ineq.es (Eisenbrand, Oriolo, Stauffer, V. '06)

・ロン ・四 ・ ・ ヨ ・ ・ ヨ



• $\alpha \leq$ 2, Clique neughborhood ineq.es (Cook '87)

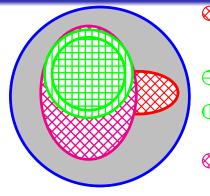
• $\alpha \leq$ 3, Roots characterization (Pecher & Wagler '06)

Line graphs Edmonds ineq.es

) Comp. of fuzzy linear interval strips Edmonds ineq.es (Chudnovsky & Seymour '04)

Fuzzy circular interval graphs Clique family ineq.es (Eisenbrand, Oriolo, Stauffer, V. '06)

Fuzzy linear int. strips + Fuzzy XX-strips + Fuzzy antihat strips ? STAB(G) ?



• $\alpha \leq$ 2, Clique neughborhood ineq.es (Cook '87)

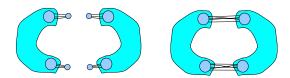
• $\alpha \leq$ 3, Roots characterization (Pecher & Wagler '06)

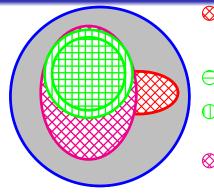
Line graphs Edmonds ineq.es

) Comp. of fuzzy linear interval strips Edmonds ineq.es (Chudnovsky & Seymour '04)

Fuzzy circular interval graphs Clique family ineq.es (Eisenbrand, Oriolo, Stauffer, V. '06)

Strips and strip compositions:





• $\alpha \leq$ 2, Clique neughborhood ineq.es (Cook '87)

• $\alpha \leq$ 3, Roots characterization (Pecher & Wagler '06)

Line graphs Edmonds ineq.es

Comp. of fuzzy linear interval strips
 Edmonds ineq.es
 (Chudnovsky & Seymour '04)

Fuzzy circular interval graphs Clique family ineq.es (Eisenbrand, Oriolo, Stauffer, V. '06)

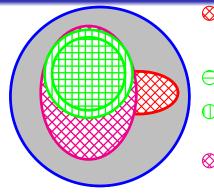
 \Rightarrow Fuzzy linear interval strips + Fuzzy XX-strips + Fuzzy antihat strips

O with

with no homogeneus \Rightarrow pairs of cliques

 \Rightarrow Linear int. strips + XX-strips + Antihat strips

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



• $\alpha \leq$ 2, Clique neughborhood ineq.es (Cook '87)

• $\alpha \leq$ 3, Roots characterization (Pecher & Wagler '06)

Line graphs Edmonds ineq.es

Comp. of fuzzy linear interval strips
 Edmonds ineq.es
 (Chudnovsky & Seymour '04)

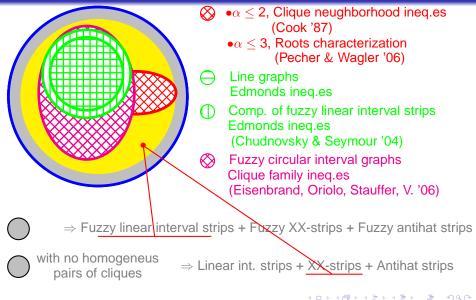
Fuzzy circular interval graphs Clique family ineq.es (Eisenbrand, Oriolo, Stauffer, V. '06)

 \Rightarrow Fuzzy linear interval strips + Fuzzy XX-strips + Fuzzy antihat strips

 \bigcirc

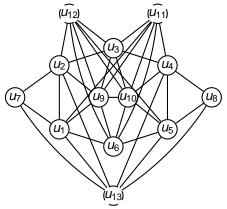
with no homogeneus pairs of cliques \Rightarrow Linear int. strips + <u>XX-strips</u> + Antihat strips

・ロト・日本・日本・日本・日本・



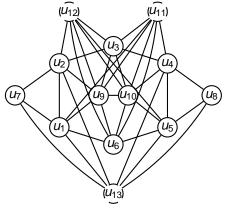
XX strips

An XX-strip is the graph:



XX strips

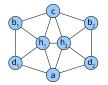
An XX-strip is the graph:



An XX-graph is a composition of fuzzy linear interval strips and XX-strips.

Gears and gear composition

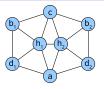
A gear is the graph:



<ロ> (四) (四) (三) (三) (三)

Gears and gear composition

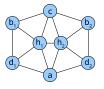
A gear is the graph:



• An edge $\{v_1, v_2\}$ of a given graph $H = (V_H, E_H)$ is said to be simplicial if $K_1 = N(v_1) \setminus \{v_2\}$ and $K_2 = N(v_2) \setminus \{v_1\}$ are two nonempty cliques of H

Gears and gear composition

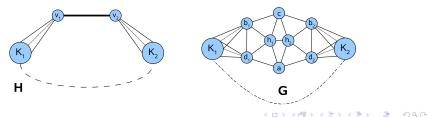
A gear is the graph:



• An edge $\{v_1, v_2\}$ of a given graph $H = (V_H, E_H)$ is said to be simplicial if $K_1 = N(v_1) \setminus \{v_2\}$ and $K_2 = N(v_2) \setminus \{v_1\}$ are two nonempty cliques of H

• The composition of a graph $H = (V_H, E_H)$ and a gear B

along the simplicial edge $\{v_1, v_2\} \in E_H$ is the following geared graph G(H, B, e):



G-extendable and geared inequalities

Let *H* be a graph with a simplicial edge $e = v_1 v_2$.

- An inequality (π, π₀) which is valid for STAB(H) is said to be g-extendable (with respect to e) if π_{ν1} = π_{ν2} = λ > 0 and it is not the inequality x_{ν1} + x_{ν2} ≤ 1.
- Let $B = (V_B, E_B)$ be a gear and (π, π_0) be g-extendable with respect to *e*. Then the inequalities

$$\diamond \quad \sum_{i \in V_H \setminus \{v_1, v_2\}} \pi_i x_i + \lambda \sum_{i \in V_B \setminus \{h_1, h_2\}} x_i + 2\lambda (x_{h_1} + x_{h_2}) \leq \pi_0 + 2\lambda$$

(日) (日) (日) (日) (日) (日) (日)

$$\begin{array}{l} & \sum_{i \in V_{H} \setminus \{v_{1}, v_{2}\}} \pi_{i} x_{i} + \lambda \sum_{i \in V_{B} \setminus A} x_{i} \leq \pi_{0} + \lambda \\ & \text{where} \quad A \in \{\{b_{1}, c\}, \{b_{2}, c\}, \{d_{1}, a\}, \{d_{2}, a\}, \{a, c\}\} \end{array}$$

are called geared inequalities generated by (π, π_0)

G-extendable and geared inequalities

Let *H* be a graph with a simplicial edge $e = v_1 v_2$.

- An inequality (π, π₀) which is valid for STAB(H) is said to be g-extendable (with respect to e) if π_{ν1} = π_{ν2} = λ > 0 and it is not the inequality x_{ν1} + x_{ν2} ≤ 1.
- Let B = (V_B, E_B) be a gear and (π, π₀) be g-extendable with respect to e. Then the inequalities

$$\circ \sum_{i \in V_{H} \setminus \{v_{1}, v_{2}\}} \pi_{i} \mathbf{x}_{i} + \lambda \sum_{i \in V_{B} \setminus \{h_{1}, h_{2}\}} \mathbf{x}_{i} + 2\lambda (\mathbf{x}_{h_{1}} + \mathbf{x}_{h_{2}}) \leq \pi_{0} + 2\lambda$$
$$\circ \sum_{i \in V_{H} \setminus \{v_{1}, v_{2}\}} \pi_{i} \mathbf{x}_{i} + \lambda \sum_{i \in V_{B} \setminus A} \mathbf{x}_{i} \leq \pi_{0} + \lambda$$
$$\text{where } \mathbf{A} \in \{\{\mathbf{b}_{1}, \mathbf{c}\}, \{\mathbf{b}_{2}, \mathbf{c}\}, \{\mathbf{d}_{1}, \mathbf{a}\}, \{\mathbf{d}_{2}, \mathbf{a}\}, \{\mathbf{a}, \mathbf{c}\}\}$$

are called geared inequalities generated by (π, π_0)

G-liftable and g-lifted inequalities

Let H^e be the graph obtained from H by subdividing the simplicial edge e with a new node t.

- An inequality (π, π₀) which is valid for STAB(H^e) is said to be g-liftable (with respect to e) if π_{v1} = π_{v2} = π_t = λ > 0.
- Let $B = (V_B, E_B)$ be a gear and (π, π_0) be g-liftable with respect to *e*. Then the inequalities

$$\begin{aligned} &\diamond \quad \sum_{i \in V_H \setminus \{v_1, v_2\}} \pi_i X_i + \lambda \sum_{i \in V_B} X_i \le \pi_0 + \lambda, \\ &\diamond \quad \sum_{i \in V_H \setminus \{v_1, v_2\}} \pi_i X_i + \lambda \sum_{i \in V_B \setminus A} X_i \le \pi_0 \\ &\text{where} \quad A \in \{\{b_1, c, b_2, h_1, h_2\}, \{d_1, a, d_2, h_1, h_2\}\} \end{aligned}$$

(日) (日) (日) (日) (日) (日) (日)

are called g-lifted inequalities generated by (π, π_0)

G-liftable and g-lifted inequalities

Let H^e be the graph obtained from H by subdividing the simplicial edge e with a new node t.

- An inequality (π, π₀) which is valid for STAB(H^e) is said to be g-liftable (with respect to e) if π_{v1} = π_{v2} = π_t = λ > 0.
- Let B = (V_B, E_B) be a gear and (π, π₀) be g-liftable with respect to e. Then the inequalities

$$\begin{aligned} &\diamond \quad \sum_{i \in V_{\mathcal{H}} \setminus \{v_1, v_2\}} \pi_i \mathbf{x}_i + \lambda \sum_{i \in V_{\mathcal{B}}} \mathbf{x}_i \le \pi_0 + \lambda, \\ &\diamond \quad \sum_{i \in V_{\mathcal{H}} \setminus \{v_1, v_2\}} \pi_i \mathbf{x}_i + \lambda \sum_{i \in V_{\mathcal{B}} \setminus \mathcal{A}} \mathbf{x}_i \le \pi_0 \\ & \text{where} \quad \mathcal{A} \in \{\{b_1, c, b_2, h_1, h_2\}, \{d_1, a, d_2, h_1, h_2\}\} \end{aligned}$$

are called g-lifted inequalities generated by (π, π_0)

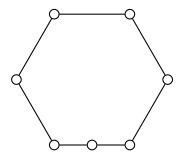
The stable set polytope of a geared graph

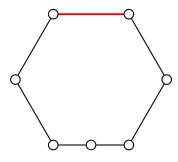
Theorem Let $G = (H, B_Y, e)$ be a geared graph. Then the stable set polytope STAB(G) is described by the following linear inequalities:

- clique-inequalities,
- (lifted) 5-wheel inequalities,
- geared inequalities associated with g-extendable facet defining inequalities of *STAB*(*H*),
- g-lifted inequalities associated with g-liftable facet defining inequalities of STAB(H^e),

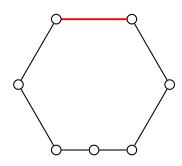
(日) (日) (日) (日) (日) (日) (日)

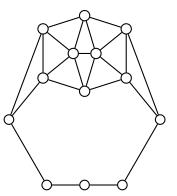
facet defining inequalities of STAB(H),

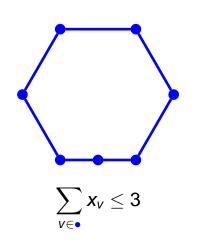


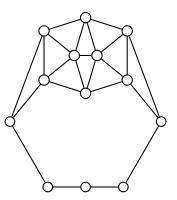


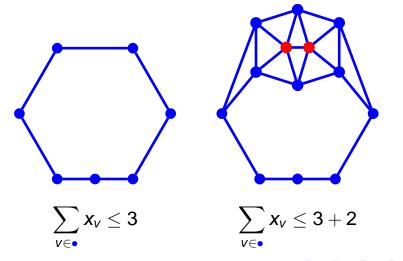
◆□ > ◆□ > ◆三 > ◆三 > ○ ● ○ ○ ○



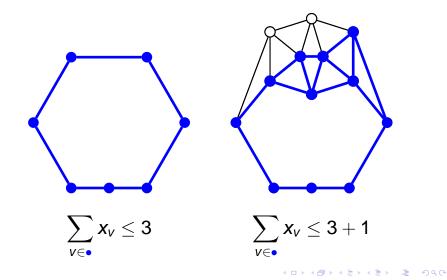


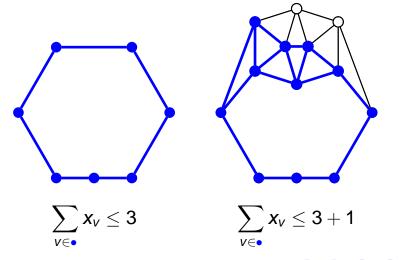






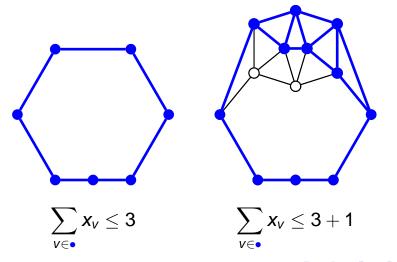
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで





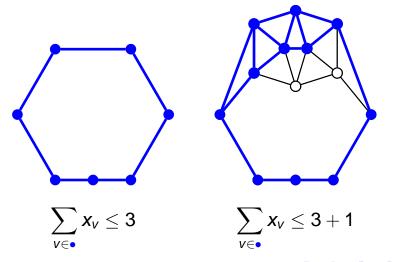
▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

Geared inequalities



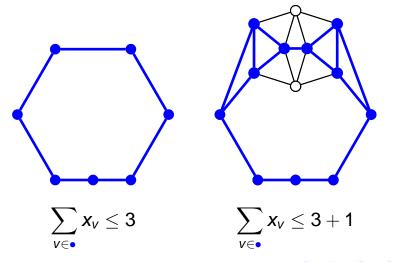
◆□ > ◆□ > ◆豆 > ◆豆 > → 豆 → ⊙ < ⊙

Geared inequalities

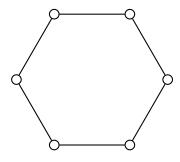


▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

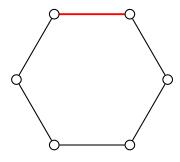
Geared inequalities



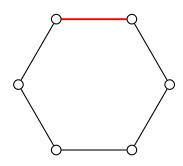
▲□▶▲□▶▲□▶▲□▶ □ のへで

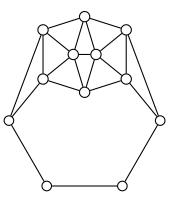


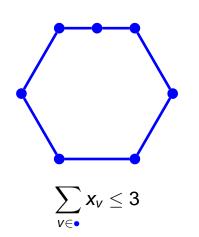
◆□ > ◆□ > ◆三 > ◆三 > ○ ● ○ ○ ○

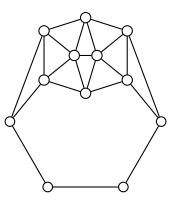


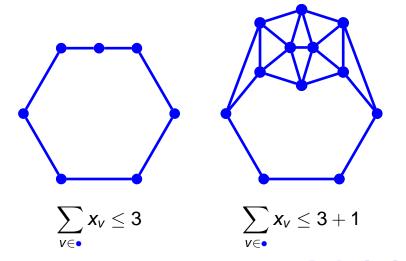
◆□ > ◆□ > ◆三 > ◆三 > ○ ● ○ ○ ○



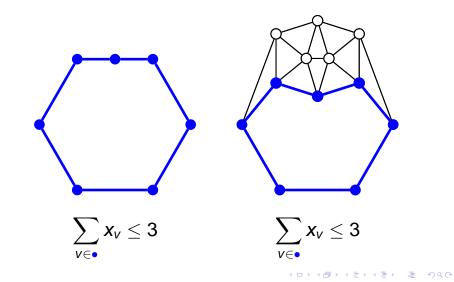


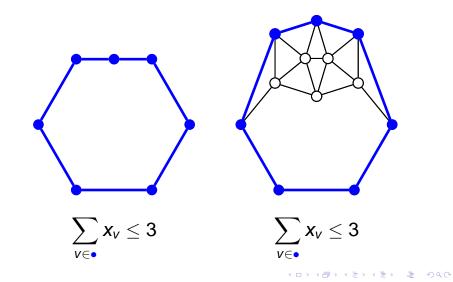


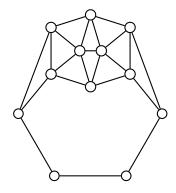




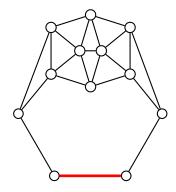
▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@



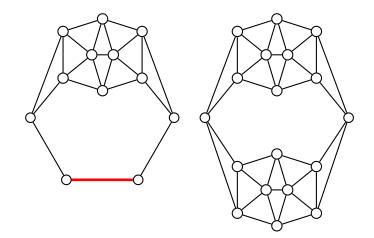


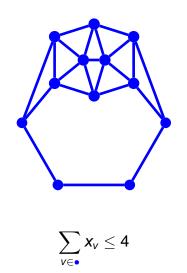


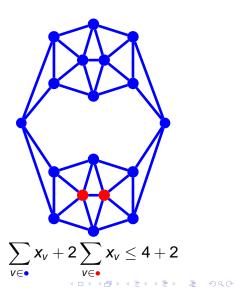
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

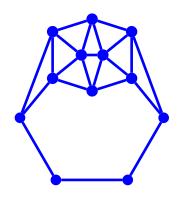


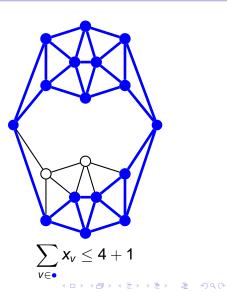
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

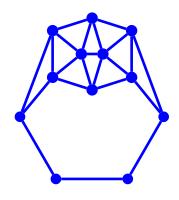


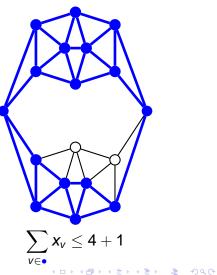


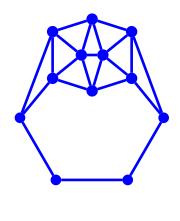


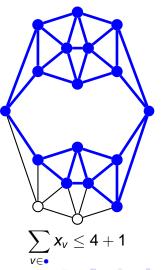




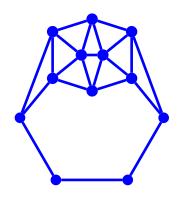


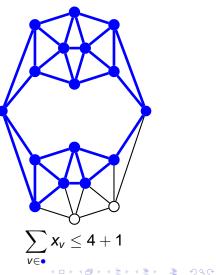


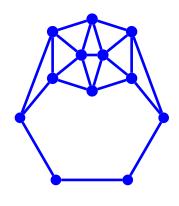


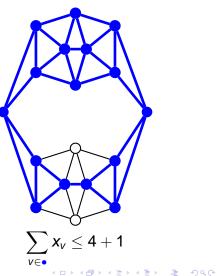


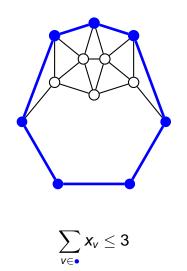
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

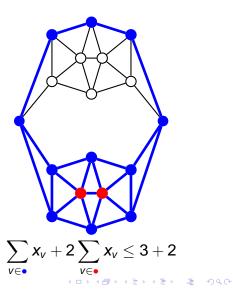


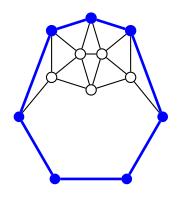


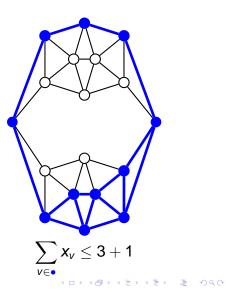


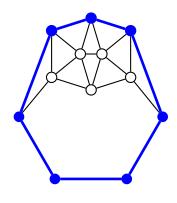


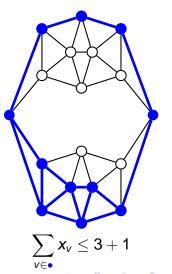




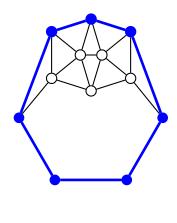


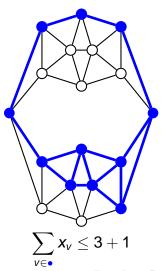




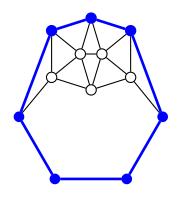


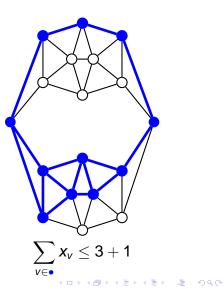
<ロ> <@> < E> < E> E のQの

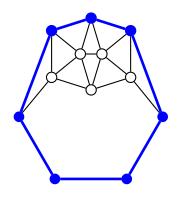


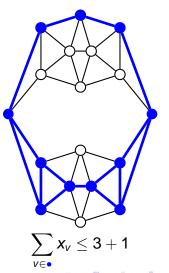


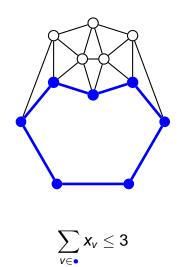
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

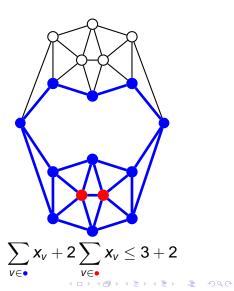


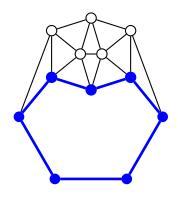


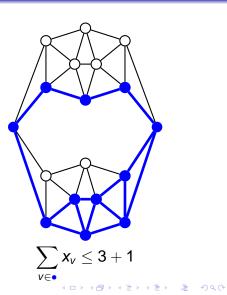


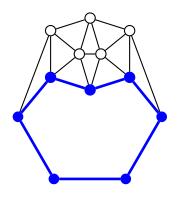


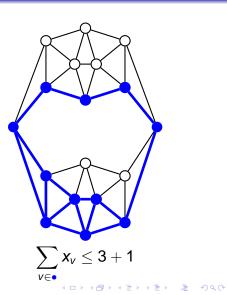


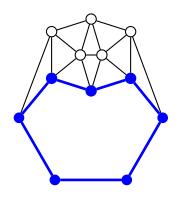


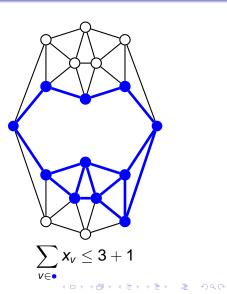


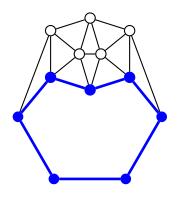


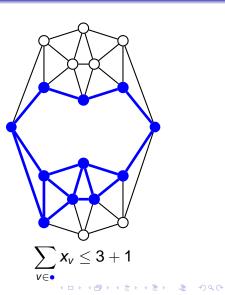


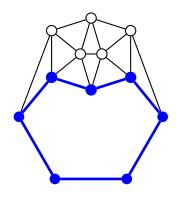


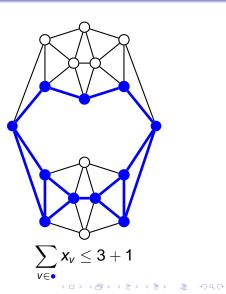


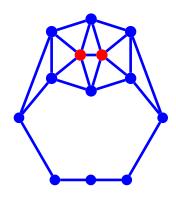


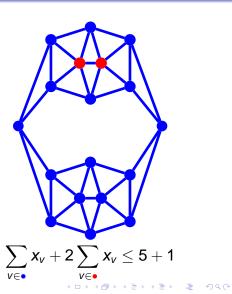


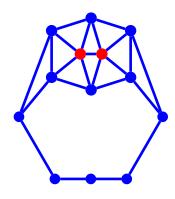


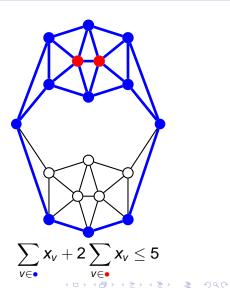


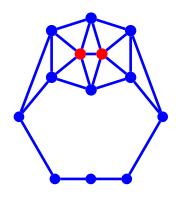


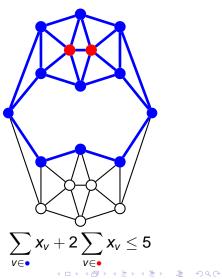


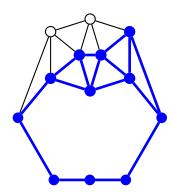


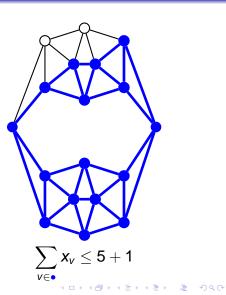


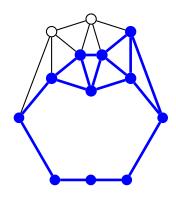


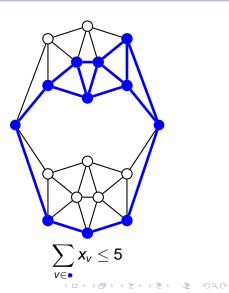


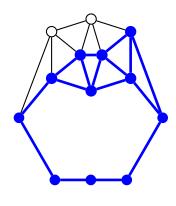


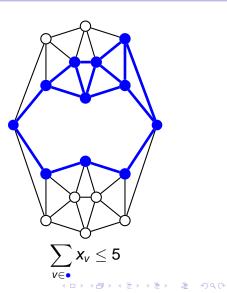


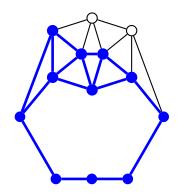


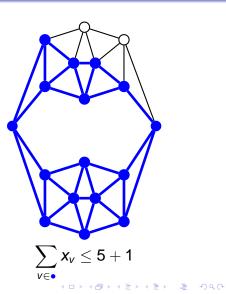


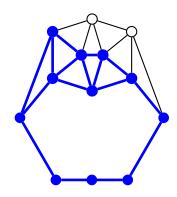


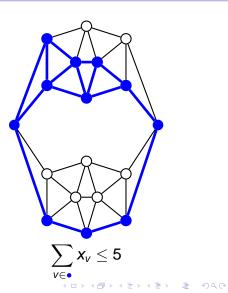


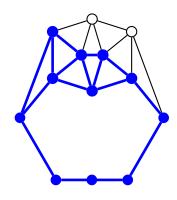


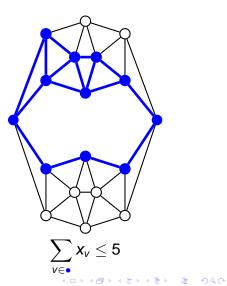


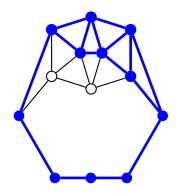


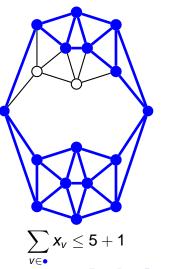




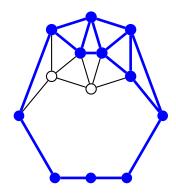


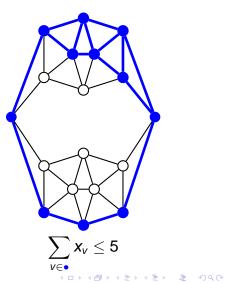


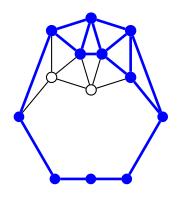


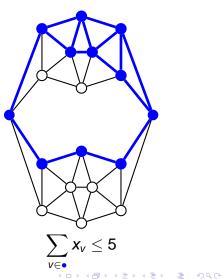


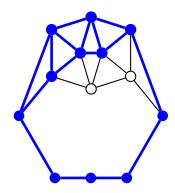
◆□ ◆ ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

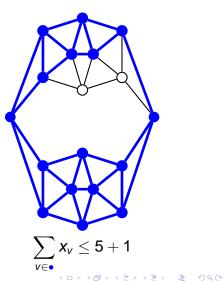


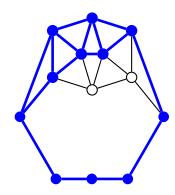


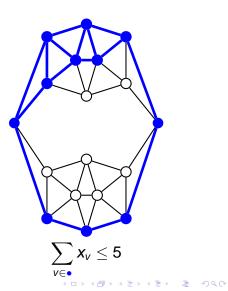


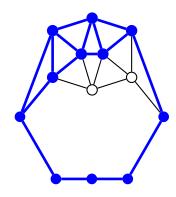


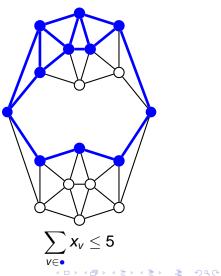


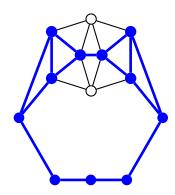


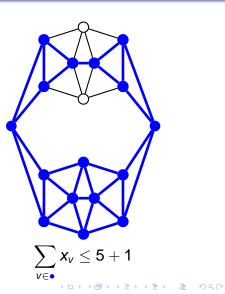


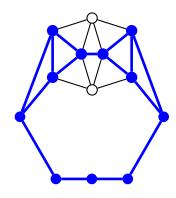


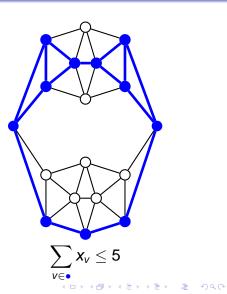


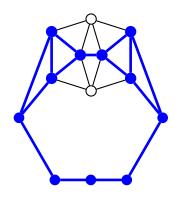


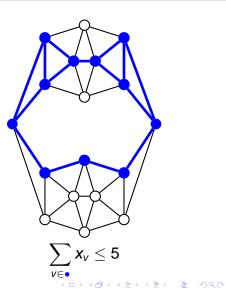












\mathcal{G}_H graphs

Given a graph *H*, define E_H^* as the set of its simplicial edges, and let a g-operation on $e \in E_H^*$ be either a gear composition or an edge subdivision applied on e. A graph *G* belongs to \mathcal{G}_H if and only if

- either G = H,
- or G = (L, B, e), where L ∈ G_H, B is a gear, and e ∈ E^{*}_H ∩ E_L, i.e., e is a simplicial edge of H on which no g-operations has been applied,

• or $G = L^e$, where $L \in \mathcal{G}_H$ and $e \in E_H^* \cap E_L$.

G-perfect graphs

A facet defining inequality $(\gamma, \gamma_0) \in \mathcal{G}$ if and only if it is (the sequential lifting of)

- either a rank inequality,
- or a 5-wheel inequality,
- or a geared or a g-lifted inequality associated with an inequality in *G*.

A graph G is \mathcal{G} -perfect if and only if STAB(G) can be described by inequalities in \mathcal{G} }.

Theorem. Let *H* be a graph and E_H^* the set of its simplicial edges. If *H* and H^F are \mathcal{G} -perfect for any $F \subseteq E_H^*$, then every graph $G \in \mathcal{G}_H$ is \mathcal{G} -perfect.

G-perfect graphs

A facet defining inequality $(\gamma, \gamma_0) \in \mathcal{G}$ if and only if it is (the sequential lifting of)

- either a rank inequality,
- or a 5-wheel inequality,
- or a geared or a g-lifted inequality associated with an inequality in *G*.

A graph G is \mathcal{G} -perfect if and only if STAB(G) can be described by inequalities in \mathcal{G} .

Theorem. Let *H* be a graph and E_H^* the set of its simplicial edges. If *H* and H^F are *G*-perfect for any $F \subseteq E_H^*$, then every graph $G \in \mathcal{G}_H$ is *G*-perfect.

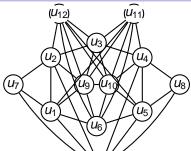
G-perfect graphs

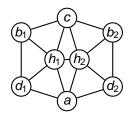
A facet defining inequality $(\gamma, \gamma_0) \in \mathcal{G}$ if and only if it is (the sequential lifting of)

- either a rank inequality,
- or a 5-wheel inequality,
- or a geared or a g-lifted inequality associated with an inequality in *G*.

A graph G is \mathcal{G} -perfect if and only if STAB(G) can be described by inequalities in \mathcal{G} .

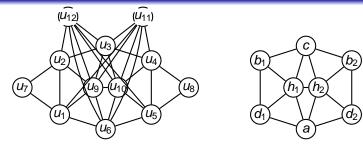
Theorem. Let *H* be a graph and E_H^* the set of its simplicial edges. If *H* and H^F are \mathcal{G} -perfect for any $F \subseteq E_H^*$, then every graph $G \in \mathcal{G}_H$ is \mathcal{G} -perfect.





• u_{13} can be used a separately by a proper linear strip

- u₁₁ and u₁₂ produce only sequential lifting of geared or g-lifted inequalities
 (+ two new g-lifted inequalities that are isomorphic to H^e)
- XX-strip composition and gear composition are equivalent (provided that the simplicial edge $\{v_1, v_2\}$ is such that $N(K_1 \cap K_2) \subseteq N(K_1) \cup N(K_2)$)

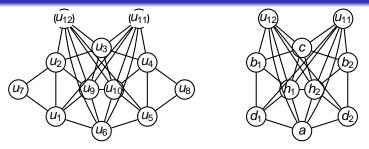


- u₁₃ can be added separately by a proper linear strip
- u₁₁ and u₁₂ produce only sequential lifting of geared or g-lifted inequalities

 (+ two new g-lifted inequalities that are isomorphic to H^e)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

 XX-strip composition and gear composition are equivalent (provided that the simplicial edge {v₁, v₂} is such that N(K₁ ∩ K₂) ⊆ N(K₁) ∪ N(K₂))

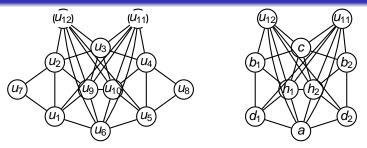


u₁₃ can be added separately by a proper linear strip

u₁₁ and u₁₂ produce only sequential lifting of geared or g-lifted inequalities
 (+ two new g-lifted inequalities that are isomorphic to H^e)

• XX-strip composition and gear composition are equivalent (provided that the simplicial edge $\{v_1, v_2\}$ is such that $N(K_1 \cap K_2) \subseteq N(K_1) \cup N(K_2)$)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●



- *u*₁₃ can be added separately by a proper linear strip
- u₁₁ and u₁₂ produce only sequential lifting of geared or g-lifted inequalities

 (+ two new g-lifted inequalities that are isomorphic to H^e)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 XX-strip composition and gear composition are equivalent (provided that the simplicial edge {v₁, v₂} is such that N(K₁ ∩ K₂) ⊆ N(K₁) ∪ N(K₂)) Theorem. XX-graphs are \mathcal{G} -perfect.