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Given a graph G = (V,E)
@ Astable set SisasubsetofV s.t. ifu,v € S = {u,v} ¢ E.

@ Givenw ¢ Q\fr, the Stable Set Problem consists in finding a
stable set of G of maximum weight.

@ The Stable Set Polytope, denoted by STAB(G), is the
convex hull of the incidence vectors of the stable sets of G.

@ The Stable Set problem is NP-hard
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The Stable Set Problem on Claw-Free Graphs

A Claw is the following graph: (%

@ The Stable Set Problem is polynomial time solvable on
claw-free graphs
= Minty 81
= (Tamura and Nakamura 02, Schrijver 03)
= Oriolo, Pietropaoli, Stauffer 08

@ STAB(G) IS NOT KNOWN !!
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The Structure of Claw-Free Graphs (Chudnovsky & Seymour '04

Q) ea < 2, Clique neughborhood ineq.es

TN (Cook '87)

\ ea < 3, Roots characterization
(Pecher & Wagler '06)

Line graphs

Edmonds ineq.es

Comp. of fuzzy linear interval strips

Edmonds ineq.es

(Chudnovsky & Seymour '04)

» & Fuzzy circular interval graphs
Clique family ineq.es
(Eisenbrand, Oriolo, Stauffer, V. '06)
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O = Fuzzy linearlinterval strips + Fdxgzy XX-strips + Fuzzy antihat strips

with no homogeneus

pairs of cliques = Linear int. strips + XXcstrips + Antihat strips
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An XX-strip
is the graph:
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An XX-graph is a composition of fuzzy linear interval strips and
XX-strips.
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Gears and gear composition

A gear is the graph:

e An edge {v1,v2} of a given graph H = (V, Ey) is said to be simplicial
if Kp = N(v1) \ {v2} and K; = N(v2) \ {v1} are two nonempty cliques of H
e The composition of a graph H = (Viy,Ey) and a gear B
along the simplicial edge {vi,Vv2} € Ey is the following geared graph G(H, B, e):
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Let H be a graph with a simplicial edge e = vyva.

@ An inequality (7, mo) which is valid for STAB(H) is said to be
g-extendable (with respect to e) if 7y, = m, = A > 0 and it is not
the inequality xy, + Xy, < 1.

@ Let B = (Vg,Eg) be a gear and (w, mp) be g-extendable with
respect to e. Then the inequalities

o Z X + A Z Xi + 2)\(Xh1 + Xhz) < mo+2A

ieVi\{v,va} ieVg\{hy,hy}
o Z X + A Z Xi <mo+ A
iEVH\{Vl,Vz} iEVB\A

where A € {{by,c},{bz,c},{d1,a},{dz,a},{a,c}}

are called geared inequalities generated by (7, 7o)
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G-liftable and g-lifted inequalities

Let H® be the graph obtained from H by subdividing the simplicial
edge e with a new node t.

@ An inequality (7, mo) which is valid for STAB(H®) is said to be
g-liftable (with respectto e) if 7y, = m, = m = A > 0.

@ Let B = (Vg, Eg) be a gear and (w, ) be g-liftable with respect
to e. Then the inequalities

S Z 7TiXi+)\ZXi§7To+)\,

i€V \{v1,v2} ieVe
<o Z X + A Z Xj < mo
1EVH\{v1,v2} IEVE\A

where A ¢ {{bl,C, bz, hl, hz}, {dl,a, dz, hl, hz}}

are called g-lifted inequalities generated by (r, m)



The stable set polytope of a geared graph

Theorem Let G = (H, By, e) be a geared graph. Then the
stable set polytope STAB(G) is described by the following
linear inequalities:
e clique-inequalities,
o (lifted) 5-wheel inequalities,
e geared inequalities associated with g-extendable facet
defining inequalities of STAB(H),

o g-lifted inequalities associated with g-liftable facet defining
inequalities of STAB(H®),

e facet defining inequalities of STAB(H),
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Gy graphs

Given a graph H, define E/; as the set of its simplicial edges, and let a
g-operation on e € E;; be either a gear composition or an edge
subdivision applied on e. A graph G belongs to Gy if and only if

@ either G =H,

@ orG =(L,B,e),whereL € Gy,Bisagear,ande € ENE, i.e.,
e is a simplicial edge of H on which no g-operations has been
applied,

@ orG=L®% whereLeGyande € EjNE..



G-perfect graphs

A facet defining inequality (v, v0) € G if and only if it is (the sequential
lifting of)

@ either a rank inequality,
@ or a 5-wheel inequality,

@ or a geared or a g-lifted inequality associated with an inequality
ingG.




G-perfect graphs

A facet defining inequality (v, v0) € G if and only if it is (the sequential
lifting of)

@ either a rank inequality,
@ or a 5-wheel inequality,

@ or a geared or a g-lifted inequality associated with an inequality
ingG.

A graph G is G-perfect if and only if STAB(G) can be described by
inequalities in G}.




G-perfect graphs

A facet defining inequality (v, v0) € G if and only if it is (the sequential
lifting of)

@ either a rank inequality,
@ or a 5-wheel inequality,

@ or a geared or a g-lifted inequality associated with an inequality
ingG.

A graph G is G-perfect if and only if STAB(G) can be described by
inequalities in G}.

Theorem. Let H be a graph and E}; the set of its simplicial edges.
If H and HF are G-perfect for any F C E;, then every graph
G € Gy is G-perfect.
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@ uj3 can be added separately by a proper linear strip

@ uy; and ujy, produce only sequential lifting of geared or g-lifted
inequalities
(+ two new g-lifted inequalities that are isomorphic to H®)

@ XX-strip composition and gear composition are equivalent

(provided that the simplicial edge {v1, V2} is such that
N(Ki NKz) € N(K1) UN(K2))



Theorem. XX-graphs are G-perfect.



