Graph Theoretic Characterization of Revenue Equivalence

Marc Uetz University of Twente

joint work with Birgit Heydenreich Rudolf Müller Rakesh Vohra

Paul Klemperer

The key result in auction theory is the remarkable Revenue Equivalence Theorem...

Much of auction theory can be understood in terms of this theorem...

This talk

Characterization of RE via graph theory, not only for auctions

Motivation Setting Characterization Applications

Introducing Revenue Equivalence: Single Item Auction

• wins \Rightarrow utility=valuation-price

Auction

who will be the winner?what will be the price per bidder?

allocation rule payment scheme

Motivation Setting Characterization Applications

2nd Price Auction (Vickrey '61)

Result

Allocation rule is efficient (allocates to v_{max}), auctioneer's revenue is (only) v_{n-1} ... can we get more revenue?

1st Price Auction

Allocation & payment rule

Bidders submit bids b_i by email

- allocate item to highest bid
- payment $\pi_i = b_i$

Bidders strategy?

 trivial: bid below v_i (bid-shading), but by how much? (now depends on given information on other bidders!)

Result

Allocation rule is efficient (allocates to v_{max}), to compare (expected) revenues, look at simple example...

Two Auctions: Revenues

- assume 2 bidders only
- both valuations v_j are i.i.d., uniform on [0, 1]

2nd price auction (Vickrey)

- bid $b_j = v_j$ (dominant strategy equilibrium)
- revenue collected $E[\min\{v_1, v_2\}] = \frac{1}{3}$

1st price auction

- bid $b_j = \frac{n-1}{n}v_j = \frac{1}{2}v_j$ (Bayes-Nash equilibrium)
- revenue collected $\frac{1}{2}E[\max\{v_1, v_2\}] = \frac{1}{2}\left(\frac{2}{3}\right) = \frac{1}{3}$

Auctions are quite different, expected revenues are equivalent

Revenue Equivalence (RE)

- auctioning a single item
- bidders uncertain about other bidders' valuations

Textbook Theorem

Suppose bidders'valuations are i.i.d. and bidders are risk neutral (maximizing expected utility). Then any [...] standard auction^a yields the same (expected) revenue to the seller.

Example: 1st price auction \leftrightarrow 2nd price auction

^aEfficient: bidder with v_{max} wins Individual rational: losers pay 0

see: Vickrey '61/'62, Riley & Samuelson '81, Myerson '81

Revenue Equivalence — Consequences

As auction designer

- given some auction with (expected) revenue X
- natural approach to increase X: optimize the payments
- but, whenever revenue equivalence holds ... to increase revenue need to modify the allocation rule

Example

Using 'reserve prices' in auctions increases expected revenue (at the expense of possibly not allocating the item)

Mechanism Design: Setting

- agents *i* = 1, . . . , *n*
- types $t_i \in T_i$, private information
- outcomes $a \in A$
- valuations $v_i \colon A \times T_i \to \mathbb{R}$, (or: $v_i \colon T \to \mathbb{R}^A$)

Direct revelation mechanism given reports t_1, \ldots, t_n of all agents mechanism: (f, π) allocation rule payment scheme $f(t_1, \ldots, t_n) = a$ $\pi_i(t_1, \ldots, t_n) \in \mathbb{R}$ payment from i

utility = valuation - payment, $u_i = v_i(f(t), t_i) - \pi_i(t)$

Concepts

Definition (truthful mechanism)

 (f,π) truthful iff for all agents *i*, reports $t_{-i} = (\ldots, t_{i-1}, t_{i+1}, \ldots)$,

utility from truth-telling $t_i \ge$ utility from lying s_i

 \rightarrow allocation rule *f* is called (truthfully) implementable

Why care about truthfulness?

By Myerson's revelation principle, this restriction is w.l.o.g.

Definition (revenue equivalence, RE)

Let f truthfully implementable. f satisfies RE iff for all truthful (f, π) and (f, π') , for all agents i, $\pi_i - \pi'_i = const. \forall t_{-i}$

Revenue Equivalence: Literature

Sufficient conditions on agents' preferences (T, v)

- (Green+Laffont '77, Holmström '79): f =utilitarian maximizer
- (Myerson '81, Krishna+Maenner '01, Milgrom+Segal '02): *all* implementable *f*

Characterization of agents' preferences (T, v)

- (Suijs '96): on finite outcome spaces, f = utilitarian maximizer satisfies RE
- (Chung+Olszewski '07): on finite outcome spaces, *all* implementable *f* satisfy RE

Our result

11

111

characterize agents preferences (T, v) and f s.t. RE holds, arbitrary outcome space

Motivation Setting Characterization Applications

Link to Graph Theory: Allocation Graph G_f

fix one agent *i* and reports t_{-i} of others (notation: drop index *i*)

Allocation graph G_f for agent *i*

complete directed graph

- node set: possible outcomes $a, b \in A$ (may be infinite)
- arc lengths

$$\ell_{ab} = \inf_{t \in f^{-1}(b)} [v(b,t) - v(a,t)]$$

"if true type is any t with f(t) = b, $\ell_{ab} = (\text{least})$ gain in valuation for truthtelling instead of lying to get outcome a"

Node Potentials

Remark: Payments for outcomes

- (f, π) truthful and f(s) = f(t) = a for two reports s and t, then $\pi(s) = \pi(t)$
- \Rightarrow w.l.o.g. define payments $\pi(a)$ for outcomes $a \in A$ only

Definition (node potential)

 $\pi: G_f \to \mathbb{R}$ such that (shortest path) \triangle -inequality holds for all arcs (a, b):

 $\pi(b) \leq \pi(a) + \ell_{ab}$

Truthful Mechanism \Leftrightarrow Node Potential

Observation (Rochet, 1987)

 (f,π) truthful $\Leftrightarrow \pi(\cdot)$ node potential in G_f

 $\begin{array}{l} (f,\pi) \text{ truthful iff for any outcomes } a, b:\\ \text{utility truth-telling } t \in f^{-1}(b) \geq \text{utility lying false } s \in f^{-1}(a)\\ \Leftrightarrow v(b,t) - \pi(b) \geq v(a,t) - \pi(a) \qquad \forall t \in f^{-1}(b)\\ \Leftrightarrow \pi(a) + [v(b,t) - v(a,t)] \geq \pi(b) \qquad \forall t \in f^{-1}(b)\\ \Leftrightarrow \pi(a) + \inf_{t \in f^{-1}(b)} [v(b,t) - v(a,t)] \geq \pi(b)\\ \Leftrightarrow \pi(a) + \ell_{ab} \geq \pi(b) \end{array}$

Node Potentials

Observation

 (f,π) truthful $\Leftrightarrow \pi$ node potential in G_f

Consequence

 $f ext{ is implementable } egin{array}{c} \operatorname{Rochet}'^{87} & G_f ext{ has node potential} \\ & & & & \\ & & & \\ & &$

Revenue equivalence?

f satisfies $RE \Leftrightarrow$ node potential in G_f unique (up to constant)

Unique Node Potential - Characterization

Proposition 1 Any two node potentials differ only by a constant

$$\texttt{fist}(v,w) + \texttt{dist}(w,v) = 0$$

Proof:

"
$$\Downarrow$$
" dist (v, \cdot) and dist (w, \cdot) are node potentials, so
dist $(v, w) = \underbrace{dist(w, w)}_{=0} + c$ and $\underbrace{dist(v, v)}_{=0} = dist(w, v) + c$

"
$$\uparrow$$
" $\pi(w) - \pi(v) \le dist(v, w)$ and $\pi(v) - \pi(w) \le dist(w, v)$
so $\pi(w) = dist(v, w) + \pi(v)$, for all w
so $\pi(\cdot)$ and $dist(v, \cdot)$ differ by constant $\pi(v)$

Main Result: Characterization of RE

Theorem (Characterization of RE)

Truthfully implementable f satisfies revenue equivalence \uparrow For all outcomes $a, b, dist_{G_f}(a, b) + dist_{G_f}(b, a) = 0$

Proof.

- payment scheme $\pi \Leftrightarrow$ node potential in G_f
- $dist_{G_f}(a, b) + dist_{G_f}(b, a) = 0$ necessary and sufficient condition for unique node potential in G_f (± constant)

Application I: Sufficient Conditions for RE

Theorem 1 (A finite)

- \bullet agents' types ${\cal T}$ (topologically) connected
- for all $a \in A$, valuations $v(a, \cdot)$ continuous on T

Then any truthfully implementable f satisfies revenue equivalence

Theorem 2 (A infinite, countable)

- agents' types $\mathcal{T} \subseteq \mathbb{R}^k$, (topologically) connected
- valuations $v(a, \cdot)$ equicontinuous on T

Then any truthfully implementable f satisfies revenue equivalence

Theorems 1 and 2 aren't new – yet had heavier proofs before

Proof Idea (A finite)

 $\exists a_1 \in A_1, a_2 \in A_2 : dist(a_1, a_2) + dist(a_2, a_1) = 0$

Exercise: sufficient for dist(a, b) = dist(b, a) in G_f .

Application II: Demand Rationing

Setting

- distribute 1 unit of divisible good among *n* agents
- agent i has demand $t_i \in (0,1]$, f_i = amount allocated to i,

•
$$v_i(f_i, t_i) = \begin{cases} 0, & \text{if } f_i \geq t_i; \\ f_i - t_i, & \text{if } f_i < t_i. \end{cases}$$

Dictatorial allocation rule

Let
$$f_1 = t_1$$
, split rest equally among agents $2, \ldots, n$

- this f is implementable
- but RE doesn't hold: $\pi_1(t) = 0$ and $\pi'_1(t) = t_1 1$ are both truthful for agent 1

 \Rightarrow All known results ("..., all implementable f satisfy RE") silent!

Proportional Rule

Can show: The proportional rule

$$f_i(t) = t_i / (\sum_{j=1}^n t_j)$$
 is implementable & satisfies RE

fixing t_{-i} , the 'report-outcome function' $f_i(t_i)$ is one of the cases

Demand Rationing: RE

Theorem

If report-outcome functions $f_i(t_i)$ are continuous, and any of cases (i), (ii) or (iii) holds for every agent *i* (and t_{-i}), then RE holds.

Proof.

Explicitly compute dist functions in G_f and case distinction - tedious but not too hard

Literature Comparison - Bottom Line

previous characterizations

- Suijs '96 is a special case of ours
- Chung & Olszewski (C&O '07) can be derived quite easily

previous sufficient conditions

- Green+Laffont '77
- Holmström '79
- Krishna+Maenner '01
- Milgrom+Segal '02

can be derived, too (as also done by C&O '07)

Summary

- simple(!) characterization of RE, graph theory is key
- first condition on preferences *and* allocation rule together applies also in settings, where all previous results are silent
- works same way for other equilibrium concepts
 Bayes-Nash, Ex-post with externalities

• Myerson, R. (1981). Optimal auction design. *Mathematics of Operations Research* **6**, 58-73.

• Heydenreich, Müller, Uetz, Vohra (2009). Characterization of revenue equivalence. *Econometrica* **77**, 307-316

both are online