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The Time-dependent Traveling
Salesman Problem (TDTSP)

Generalization of the Asymmetric Traveling
Salesman Problem (ATSP), where arc costs
depend on their position in the tour with
respect to a chosen start node.

® Instead of arc costs c(i,j), there are arc-
position costs c(i,},t).

® The positions are interpreted as “times”, each
visit takes a unit of time.



Motivation I

The TDTSP is an interesting problem with
a number of applications in routing and
scheduling. Examples:

® The Traveling Deliveryman Problem
(a.k.a. Minimum Latency Problem),

® The 1]s;|2Cj scheduling problem.



Motivation II

The TDTSP can be generalized to allow
multiple routes and “non-unitary” times.
Many classical routing and scheduling
problems can be represented in that way.

® The new TDTSP facets found can be
generalized to effective valid inequalities
(not proved to define facets) for those
cases.



Motivation III

Known STSP and ATSP facets define
disappointingly low dimensional faces of the
TDTSP polytope.

® Perhaps, it can be possible to combine and
project TDTSP facets into new STSP and
ATSP facets.



Picard & Queyranne Formulation
(1978)
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Set of original nodes N, = {0,...,4}, T=5



Picard & Queyranne Formulation
(1978)
= Let N,={0,1,...,n} , N={1,...,n} and N(i)=N-{i}.

® PQ: constrained shortest path from 0 to node T:
for each v N, exactly one (v,]) must be visited .

® Notation:

* (i),1) denotes an arc from node (i,t) to node (j,t+1).
4

. X j represents the flow on arc (/,/,1)



Picard & Queyranne Formulation
(1978)
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Picard & Queyranne Formulation
(1978)

Large size, O(n?®) vars and O(n?) constraints.

Dantzig-Wolfe decomposition produces an equivalent path
formulation with n constraints (the degree constraints) and an
exponential number of path variables, that can be priced in O(n?)
time.

Not really strong. Bounds on the classical STSP inferior to DFJ(54).

Our Goal: study the polyhedral properties of the TDTSP, identifying
strong valid inequalities on a slightly modified PQ formulation that is
more convenient for that mathematical study.



Modified formulation
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Eliminate 2n variables incident to nodes O and T
(Their costs can be included in the arcs in the first and last layer)



@ AR AR
DN NN

DN DI DI D
(> £
DT T

One arc 1n the first
layer

> 2 Tfel,jzl

iEN jeN (1)

ot — S _
E ri;= ) Tig.j=l..nt=1..
=N ) =N

x > 0 and integer

n — 2

.. N



@ AR AR
DN NN

DYNTH S DIED
(> £
DT T

Flow
conservation

EE: EE: ;TLJ L

iEN jeN (1)

ot — S _
E ri;= ) Tg.j=l..nt=1..
=N ) =N

x > 0 and integer

n — 2

.. N



@ AR AR
DN NN

S 9 ‘(s‘\

DN DN DD
> >

DN T T

degree
constraints

x > 0 and integer



N AR AN
DN OO
"‘s‘\ "‘\‘ "‘V‘\
DY XOHS DGO

Solution 0->2->1->3->4->0



Modified formulation
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® n(n-1)2 variables and n2—n + 1 equations
m P =convex hull of integer solutions

® | emma: System of equations has rank n? —n



Polytope dimension

® Theorem: letn>5, then
dim (P.) = n(n-1)(n-2)

proof: by induction on n



ATSP Subtour Elimination Cuts

® On the ATSP arc formulation:
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® On our TDTSP formulation:
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[Lifted Subtour Elimination Cuts

® Both inequalities state that at least one
arc must enter S. However, on the
TDTSP the inequality can be made
much stronger:
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[Lifted Subtour Elimination Cuts

® At least one arc with index less or equal
to n-|S| must enter S, otherwise the
route can not “cover” S.
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[Lifted Subtour Elimination Cuts

® Theorem: If n > 6 and 2 < |S| < n-1 then
a lifted subtour elimination cut defines a
facet of P..

proof: by induction on n and |S|.



Two-cycle elimination Cuts

= A unit flow on arc (i,j,t) must exit node (j,t+1)
using arcs other than (j,i,t+1)

" Theorem:forn>6,% ;< ) x;, defines a
facet of P.. KON, )



Flow decomposition

® Theorem: Let x > 0 be feasible for
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then x can be decomposed as path flows from
0 to T, each with no two-cycles.



Flow decomposition

" |dea of the proof: transform each node into a
transportation problem and use results by Gale
(57) and Hoffman (60) characterizing feasible
network flow problems.



Flow decomposition and the path
formulation

One can strength the PQ bound by
eliminating s-cycles in the equivalent path
formulation.

m 2-cycle elimination is algorithmically
simple and does not change the pricing
complexity of O(n3).

B s-cycle elimination, for s > 2, iIs much
harder and costs O(s!s2n?3) (IV03).



Flow decomposition and the path
formulation

® Polyhedral 2-cycle elimination is also
easy (two-cycle cuts suffice).

® Polyhedral s-cycle elimination, even for
s=3, appears to be much harder.



Admissible flow constraints (generalize
two-cycle elimination constraints)

ldea: the flow on a set of arcs entering a set of
nodes cannot exceed the aggregate flow on a
corresponding set of compatible outgoing arcs.

" | et Xbe a set of nodes (i,f) in the PQ
formulation and E a set of arcs entering this set.

® Foreach arc ein E, A(e) is the set of arcs
compatible with a and leaving X i.e., fin A(e) iff
there is a solution that uses e and leaves X for
the first time in 1.



Admissible Flow Constraints

E={a,b,c},
A(a)={t},
A(b)={d,t}
A(c)={e,f}.

Set a bipartite graph indicating which entering arcs can correspond to
each leaving arc



Admissible Flow Constraints

Solve this s-t max-flow min-cut problem



Admissible Flow Constraints

If the min-cut is smaller than the flow entering (and leaving) X, a
violated cut is obtained



Admissible Flow Constraints

X, + X, + X >= X +X +X, =>X_ + X; >= X +X_



Admissible flow constraints

® Two cycle-elimination cuts are the particular
case where X and E are unitary.

® Theorem: for n > 6, if X is a rectangular
square of size two and E is unitary than
the AFC defines a facet of P..

® AFCs appear to be strong cuts.
® Hard to prove general facet results.



Cuts from the arc contlict graph

® ATSP CAT inequalites correspond to odd-
holes in the arc conflict graph. Ex:




Cuts from the arc contlict graph

® There are no clique cuts in the ATSP, for any
3 arcs not contained in an indegree or an
outdegree constraint, there is at least one
tour with 2 such arcs.

® The TDTSP arc-position variables produces a
richer conflict graph and clique inequalities
can be found.



TDTSP Cliques

There are two patterns in the TDTSP conflict
graph producing interesting cliques

" Star cliques

® Triangle cliques



TDTSP Cliques

There are two patterns in the TDTSP conflict
graph producing interesting cliques

® Star cliques => define facets

The same facets already defined by the two-
cycle elimination constraints! (P, is not full-

dimensional)



TDTSP Cliques

There are two patterns in the TDTSP conflict
graph producing interesting cliques

® Triangle Cliques

Defined over sets S of size 3



Alternating Triangle Clique Cuts
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" Theorem: If n > 6, the alternating triangle clique
cuts define facets of P,..



General Triangle Clique Cuts

® [Pessoa, Uchoa, Poggi (08)] showed that
triangle clique cuts (alternating or not) are
separable in polynomial time and used them
succesfully to solve Heterogenous Venhicle
Routing Problem instances.

® Conjecture: general triangle clique cuts are
also facet defining.



Preliminary computational results

® Tests on the Traveling Deliveryman Problem
Instances (minimize the average time to attend a
set of n clients). Equivalent to the 1|s;|2Cj

scheduling problem. The classical ATSP is
equivalent to the 1[s;|C,,,.

® Modelled as a TDTSP by setting
C(i,j, t) = (n't)C(l,_/)



Traveling Deliveryman Problem

® Much harder than the classical TSP. Some recent works
with good exact results

" |Lucena (90)

® Fischetti, Laporte and Martello (94) — Combinatorial
B&B, root gaps around 10%, very large seach trees, yet,
could solve the largest instances (up to 60 vertices).

® Wu, Huang and Zhan (04)

® Bigras, Gamache and Savard (08) — Column generation
+ TSP cuts + cliques, root gaps around 1%.

® Sarubbi and Luna (08)
® Mendes (08)
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E1l76 opt: 17976
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Preliminary computational results

® |ifted Subtour Elimination Cuts separated
exactly by MIP (fast);

® Admissible Flow Constraints separated by
solving min-cut problems over heuristically
generated candidate sets;

® Triangle Cliques separated exactly in
O(n3) time.



Preliminary computational results

® All the instances tested with up to 76
vertices were solved without
branching.

® | arge times (eil76 takes 10 hours).

® Current work: implementing the cuts
in an efficient BCP code.



Thanks!



