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Motivation

Edge-disjoint paths problem

Given a graph H = (V ,E ) and k pairs of vertices {si , ti}, decide whether
there exist k edge-disjoint paths connecting the k pairs si , ti .
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Given a graph H = (V ,E ) and k pairs of vertices {si , ti}, decide whether
there exist k edge-disjoint paths connecting the k pairs si , ti .

Reformulation by adding the set F of edges si ti .

Complete packing of cycles

Given a graph H ′ = (V ,E + F ), decide whether there exist |F |
edge-disjoint cycles in H ′, each containing exactly one edge of F .
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Edge-disjoint paths problem

Given a graph H = (V ,E ) and k pairs of vertices {si , ti}, decide whether
there exist k edge-disjoint paths connecting the k pairs si , ti .

Reformulation by adding the set F of edges si ti .

Complete packing of cycles

Given a graph H ′ = (V ,E + F ), decide whether there exist |F |
edge-disjoint cycles in H ′, each containing exactly one edge of F .

Suppose H ′ is planar. The problem in the dual :

Complete packing of cuts

Given a graph G = (V ′,E ′ + F ′), decide whether there exist |F ′|
edge-disjoint cuts in G , each containing exactly one edge of F ′.
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An example

Edge-disjoint paths problem
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An example

Complete packing of paths
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An example

Adding the edges
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An example

The graph H ′
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An example

Complete packing of cycles

C1

C3
C2
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An example

H ′ is planar
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An example

H ′ and his dual
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An example

H ′ and his dual
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An example

Complete packing of cycles and cuts

C1

C3
C2

Q1

Q2

Q3
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Complete packing of cuts

The graphs are not planar anymore !
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Complete packing of cuts

The problem

Given a graph G = (V ,E + F ), decide whether there exist |F |
edge-disjoint cuts in G , each containing exactly one edge of F .
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Complete packing of cuts

The problem

Given a graph G = (V ,E + F ), decide whether there exist |F |
edge-disjoint cuts in G , each containing exactly one edge of F .

Necessary condition

If the graph G = (V ,E + F ) admits a complete packing of cuts, then
F is a join : for every cycle C , |C ∩ F | ≤ |C \ F |.

C

Q1

Q2

Q3
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edge-disjoint cuts in G , each containing exactly one edge of F .

Necessary condition

If the graph G = (V ,E + F ) admits a complete packing of cuts, then
F is a join : for every cycle C , |C ∩ F | ≤ |C \ F |.

Sufficient condition ?

If F is a join, the graph G = (V ,E + F ) admits a complete packing of
cuts ?

K4NOT :
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Complete packing of cuts

The problem

Given a graph G = (V ,E + F ), decide whether there exist |F |
edge-disjoint cuts in G , each containing exactly one edge of F .

Necessary condition

If the graph G = (V ,E + F ) admits a complete packing of cuts, then
F is a join : for every cycle C , |C ∩ F | ≤ |C \ F |.

Sufficient condition ?

If F is a join, the graph G = (V ,E + F ) admits a complete packing of
cuts ?

Theorem (Middendorf, Pfeiffer)

Given a join in a graph, decide whether there exists a complete packing of
cuts is an NP-complete problem.
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Seymour graphs

Theorem (Seymour)

If G is a bipartite graph,
then for every join there exists a complete packing of cuts.
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Seymour graphs

Theorem (Seymour)

If G is a bipartite graph, (⇐⇒ no odd cycle)
then for every join there exists a complete packing of cuts.
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then for every join there exists a complete packing of cuts.
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If G is a bipartite graph, (⇐⇒ no odd cycle)
then for every join there exists a complete packing of cuts.

Theorem (Seymour)

If G is a series-parallel graph, (⇐⇒ no subdivision of K4)
then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph
if for every join there exists a complete packing of cuts.

Z. Szigeti (G-SCOP, Grenoble) Characterization of Seymour graphs January 2009 6 / 18



Seymour graphs

Theorem (Seymour)

If G is a bipartite graph, (⇐⇒ no odd cycle)
then for every join there exists a complete packing of cuts.

Theorem (Seymour)

If G is a series-parallel graph, (⇐⇒ no subdivision of K4)
then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph ⇐⇒ ?
if for every join there exists a complete packing of cuts.
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Around Seymour graphs

subclasses
1 Seymour : Graphs without odd cycle,

2 Seymour : Graphs without subdivision of K4,

3 Gerards : Graphs without odd K4 and without odd prism,

4 Szigeti : Graphs without non-Seymour odd K4 and without
non-Seymour odd prism.
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Around Seymour graphs

subclasses
1 Seymour : Graphs without odd cycle,

2 Seymour : Graphs without subdivision of K4,

3 Gerards : Graphs without odd K4 and without odd prism,

4 Szigeti : Graphs without non-Seymour odd K4 and without
non-Seymour odd prism.

K4 prism odd K4 odd prism

o
oo

o

o

e e

even subdivisions

Superclass

Seymour graph =⇒ no even subdivision of K4 and of prism.
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Attention !

Seymour property is not inherited to subgraphs !
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Attention !

Seymour property is not inherited to subgraphs !

Seymournon-Seymour
odd K4 graph
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Preliminaries

Definition

Given a join F , a cycle C is F -tight if |C ∩ F | = |C \ F |.
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Preliminaries

Remarks

Given a join F , an F -complete packing of cuts Q, two F -tight cycles C1

and C2 and a cycle C in C1 ∪ C2, then

each edge of Ci (and hence of C ) belongs to a cut Q ∈ Q,

{C ∩ Q : Q ∈ Q,C ∩ Q 6= ∅} partitions C and |C ∩ Q| is even,

|C | is even so C1 ∪ C2 is bipartite.
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Preliminaries

Remarks

Given a join F , an F -complete packing of cuts Q, two F -tight cycles C1

and C2 and a cycle C in C1 ∪ C2, then

each edge of Ci (and hence of C ) belongs to a cut Q ∈ Q,

{C ∩ Q : Q ∈ Q,C ∩ Q 6= ∅} partitions C and |C ∩ Q| is even,

|C | is even so C1 ∪ C2 is bipartite.

Lemma (Sebő)

If for a join F of G there exist two F -tight cycles whose union is not
bipartite, then G is not Seymour.
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Co-NP characterization of Seymour graphs

Theorem (Ageev, Kostochka, Szigeti)

G is not Seymour if and only if G admits a join F and two F -tight cycles
whose union is an odd K4 or an odd prism.
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Theorem (Ageev, Kostochka, Szigeti)

G is not Seymour if and only if G admits a join F and two F -tight cycles
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Examples

Seymour non-Seymour
odd K4 odd prism
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G is not Seymour if and only if G admits a join F and two F -tight cycles
whose union is an odd K4 or an odd prism.

Examples

Seymour non-Seymour
odd K4 odd prism
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Co-NP characterization of Seymour graphs

Theorem (Ageev, Kostochka, Szigeti)

G is not Seymour if and only if G admits a join F and two F -tight cycles
whose union is an odd K4 or an odd prism.

Examples

Seymour non-Seymour

C1

odd K4 odd prism
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Co-NP characterization of Seymour graphs

Theorem (Ageev, Kostochka, Szigeti)

G is not Seymour if and only if G admits a join F and two F -tight cycles
whose union is an odd K4 or an odd prism.

Examples

Seymour non-Seymour

C2

odd K4 odd prism

Z. Szigeti (G-SCOP, Grenoble) Characterization of Seymour graphs January 2009 10 / 18



Co-NP characterization of Seymour graphs

Theorem (Ageev, Kostochka, Szigeti)

G is not Seymour if and only if G admits a join F and two F -tight cycles
whose union is an odd K4 or an odd prism.

Examples

Seymour non-Seymour
odd K4 odd prism
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Co-NP characterization of Seymour graphs

Theorem (Ageev, Kostochka, Szigeti)

G is not Seymour if and only if G admits a join F and two F -tight cycles
whose union is an odd K4 or an odd prism.

Examples

Seymour non-Seymour
odd K4 odd prism

Important remark

If a graph G contains as a subgraph an even subdivision of K4 or of prism
then G is not Seymour.
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Forbidden minors ?

Attention !

Contraction of an edge does not keep Seymour property.
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A new notion of contraction

Definitions
1 G is factor-critical if ∀v ∈ V , G − v admits a perfect matching.

2 The contraction of a factor-critical subgraph and its neighbors is a
factor-contraction.
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Definitions
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2 The contraction of a factor-critical subgraph and its neighbors is a
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A new notion of contraction

Definitions
1 G is factor-critical if ∀v ∈ V , G − v admits a perfect matching.

2 The contraction of a factor-critical subgraph and its neighbors is a
factor-contraction.
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Important lemma

Factor-contraction keeps the Seymour property !
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New co-NP characterization of Seymour graphs

Theorem (Ageev, Sebő, Szigeti)

G is not Seymour if and only if

G can be factor-contracted to a graph

that contains as a subgraph an even subdivision of K4 or of the prism.
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New co-NP characterization of Seymour graphs

Theorem (Ageev, Sebő, Szigeti)

G is not Seymour if and only if

G can be factor-contracted to a graph

that contains as a subgraph an even subdivision of K4 or of the prism.

Examples

Seymour non-Seymour
odd K4 odd prism
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Proof of sufficiency :

1 Factor-contraction keeps the Seymour property,

2 If the contracted graph H contains as a subgraph an even subdivision
of K4 or of prism then H is not Seymour.
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2 If the contracted graph H contains as a subgraph an even subdivision
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Complete 2-packing of cuts

Complete 2-packing of cuts (for G and F ⊆ E (G ))

1 2|F | cuts so that

2 every edge of G belongs to ≤ 2 cuts and

3 every cut contains exactly one edge of F .
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Complete 2-packing of cuts

Complete 2-packing of cuts (for G and F ⊆ E (G ))

1 2|F | cuts so that

2 every edge of G belongs to ≤ 2 cuts and

3 every cut contains exactly one edge of F .

Example : If Q is a CPC, then 2Q is a C2PC.
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Complete 2-packing of cuts

Complete 2-packing of cuts (for G and F ⊆ E (G ))

1 2|F | cuts so that

2 every edge of G belongs to ≤ 2 cuts and

3 every cut contains exactly one edge of F .

Theorem (Edmonds-Johnson, Lovász)

F is a join ⇐⇒ there exists a complete 2-packing of cuts.
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Complete 2-packing of cuts

Complete 2-packing of cuts (for G and F ⊆ E (G ))

1 2|F | cuts so that

2 every edge of G belongs to ≤ 2 cuts and

3 every cut contains exactly one edge of F .

Theorem (Sebő)

Let G be a graph, F 6= ∅ a join, v ∈ V (F ).

(a) ∃ an F -complete 2-packing of cuts {δ(X ) : X ∈ C} and C ∈ C st

1 G [C ] is factor-critical,
2 {c} ∈ C ∀c ∈ C (if |C | = 1, then C is contained twice in C),
3 v /∈ C . (C ⊆ V (F ) − v .)

(b) If there exists an F -complete packing of cuts then there is one
containing a star different of δ(v).
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Let G be a graph, F 6= ∅ a join, v ∈ V (F ).

(a) ∃ an F -complete 2-packing of cuts {δ(X ) : X ∈ C} and C ∈ C st

1 G [C ] is factor-critical,
2 {c} ∈ C ∀c ∈ C (if |C | = 1, then C is contained twice in C),
3 v /∈ C . (C ⊆ V (F ) − v .)

(b) If there exists an F -complete packing of cuts then there is one
containing a star different of δ(v).

Z. Szigeti (G-SCOP, Grenoble) Characterization of Seymour graphs January 2009 15 / 18



Proof of necessity :

1 Minimal counter-example :
1 G non-Seymour graph,
2 any factor-contraction results in a Seymour graph,
3 F a join without F -complete packing of cuts.

2 Application of Sebő’s Theorem :
1 No C2PC for (G , F ) contains a star twice.
2 Let v ∈ V (F ). Let C and C ∈ C.
3 Factor-contracting C , FC is a join and GC is Seymour.
4 ∃ CPC Q′ for (GC , FC ) containing a star different of δ(vC ).
5 2Q′ ∪ {δ(C )} ∪ {δ(c) : c ∈ C} is a C2PC for (G , F ).
6 By (2.1), FC = ∅, that is C = V (F ) − v .

3 Subgraph :
1 G ′ − v = C is factor-critical ∀v ∈ V (F ), that is
2 G ′ is bicritical (and non-trivial).

4 Application of Lovász-Plummer’s theorem :
1 non-trivial bicritical graphs contain as a subgraph an even subdivision

of K4 or of the prism.
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Proof of necessity :

1 Minimal counter-example :
1 G non-Seymour graph,
2 any factor-contraction results in a Seymour graph,
3 F a join without F -complete packing of cuts.

2 Application of Sebő’s Theorem :
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1 No C2PC for (G , F ) contains a star twice.
2 Let v ∈ V (F ). Let C and C ∈ C.
3 Factor-contracting C , FC is a join and GC is Seymour.
4 ∃ CPC Q′ for (GC , FC ) containing a star different of δ(vC ).
5 2Q′ ∪ {δ(C )} ∪ {δ(c) : c ∈ C} is a C2PC for (G , F ).
6 By (2.1), FC = ∅, that is C = V (F ) − v .

3 Subgraph :
1 G ′ − v = C is factor-critical ∀v ∈ V (F ), that is
2 G ′ is bicritical (and non-trivial).

4 Application of Lovász-Plummer’s theorem :
1 non-trivial bicritical graphs contain as a subgraph an even subdivision

of K4 or of the prism.
Z. Szigeti (G-SCOP, Grenoble) Characterization of Seymour graphs January 2009 16 / 18



Proof of necessity :

1 Minimal counter-example :
1 G non-Seymour graph,
2 any factor-contraction results in a Seymour graph,
3 F a join without F -complete packing of cuts.

2 Application of Sebő’s Theorem :
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Algorithmic aspects

What we can not do
1 Given a graph G , decide whether it is a Seymour graph.

2 Given a graph G and a join F in G , decide whether there exists an
F -complete packing of cuts.
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Open problem

NP characterization ?
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