Simultaneous Embedding with Fixed Edges Michael Schulz University of Cologne Aussois 2009 # **Graph Drawing** ## Input One graph ${\it G}$ ## Output Layout of ${\it G}$ # Graph Drawing ## Simultaneous Graph Drawing ### **SEFE** #### **Definition** A simultaneous embedding with fixed edges (SEFE) of graphs G_1, \ldots, G_k consists of drawings $\Gamma_1, \ldots, \Gamma_k$ with - Γ_i is a planar drawing of G_i , - every node in $G_i \cap G_j$ is drawn equally in Γ_i and Γ_j and - every edge in $G_i \cap G_j$ is drawn equally in Γ_i and Γ_j . ### Known results #### Positive results Garantueed SEFE for - (tree, path) - (outerplanar graph, cycle) - (planar graph, tree) [Erten and Kobourov 2004] [Di Giacomo and Liotta 2005] [Frati 2006] ### Negative result Example pair without SEFE for two outerplanar graphs [Frati 2006] ## NP-completeness #### Theorem To decide SEFE for three graphs is NP-complete. ### Open problem The complexity for two graphs. ### P_{SEFE} - Definition #### Definition Let P_{SEFE} be the set of all planar graphs, that share a SEFE with any planar graph. $$G_1 \in P_{SEFE}, G_2 \text{ planar } \Rightarrow (G_1, G_2) \text{ has SEFE}.$$ ### P_{SEFE} - Characterization 1 #### **Theorem** #### Theorem #### Theorem #### Theorem #### Theorem #### Construction SEFE: G_1 planar, $G_2 \not\supseteq \bigcirc$ - Planar drawing D_1 of G_1 - ② Start D_2 of G_2 with $G_1 \cap G_2$ - 3 Insert remaining edges of G_2 #### Construction SEFE: G_1 planar, $G_2 \not\supseteq \emptyset$ - Planar drawing D_1 of G_1 - ② Start D_2 of G_2 with $G_1 \cap G_2$ - \odot Insert remaining edges of G_2 #### Construction SEFE: G_1 planar, $G_2 \not\supseteq \emptyset$ - Planar drawing D_1 of G_1 - 2 Start D_2 of G_2 with $G_1 \cap G_2$ - \odot Insert remaining edges of G_2 #### Construction SEFE: G_1 planar, $G_2 \not\supseteq \{$ - Planar drawing D_1 of G_1 - ② Start D_2 of G_2 with $G_1 \cap G_2$ - \odot Insert remaining edges of G_2 ### P_{SEFE} - Characterization 2 #### Theorem P_{SEFE} consists of all - forests, - circular caterpillars, - bi-stars, and - subgraphs of K₄. do not contain To show: Proof: Case distinction ### Thanks. Thank you very much for your attention.