Simultaneous Embedding with Fixed Edges

Michael Schulz

University of Cologne

Aussois 2009

Graph Drawing

Input

One graph ${\it G}$

Output

Layout of ${\it G}$

Graph Drawing

Simultaneous Graph Drawing

SEFE

Definition

A simultaneous embedding with fixed edges (SEFE) of graphs G_1, \ldots, G_k consists of drawings $\Gamma_1, \ldots, \Gamma_k$ with

- Γ_i is a planar drawing of G_i ,
- every node in $G_i \cap G_j$ is drawn equally in Γ_i and Γ_j and
- every edge in $G_i \cap G_j$ is drawn equally in Γ_i and Γ_j .

Known results

Positive results

Garantueed SEFE for

- (tree, path)
- (outerplanar graph, cycle)
- (planar graph, tree)

[Erten and Kobourov 2004]

[Di Giacomo and Liotta 2005]

[Frati 2006]

Negative result

Example pair without SEFE for

two outerplanar graphs

[Frati 2006]

NP-completeness

Theorem

To decide SEFE for three graphs is NP-complete.

Open problem

The complexity for two graphs.

P_{SEFE} - Definition

Definition

Let P_{SEFE} be the set of all planar graphs, that share a SEFE with any planar graph.

$$G_1 \in P_{SEFE}, G_2 \text{ planar } \Rightarrow (G_1, G_2) \text{ has SEFE}.$$

P_{SEFE} - Characterization 1

Theorem

Theorem

Theorem

Theorem

Theorem

Construction SEFE:

 G_1 planar, $G_2 \not\supseteq \bigcirc$

- Planar drawing D_1 of G_1
- ② Start D_2 of G_2 with $G_1 \cap G_2$
- 3 Insert remaining edges of G_2

Construction SEFE:

 G_1 planar, $G_2 \not\supseteq \emptyset$

- Planar drawing D_1 of G_1
- ② Start D_2 of G_2 with $G_1 \cap G_2$
- \odot Insert remaining edges of G_2

Construction SEFE:

 G_1 planar, $G_2 \not\supseteq \emptyset$

- Planar drawing D_1 of G_1
- 2 Start D_2 of G_2 with $G_1 \cap G_2$
- \odot Insert remaining edges of G_2

Construction SEFE:

 G_1 planar, $G_2 \not\supseteq \{$

- Planar drawing D_1 of G_1
- ② Start D_2 of G_2 with $G_1 \cap G_2$
- \odot Insert remaining edges of G_2

P_{SEFE} - Characterization 2

Theorem

P_{SEFE} consists of all

- forests,
- circular caterpillars,
- bi-stars, and
- subgraphs of K₄.

do not contain

To show:

Proof: Case distinction

Thanks.

Thank you very much for your attention.