
The Feasibility Pump

Matteo Fischetti - DEI, University of Padova
Domenico Salvagnin - DMPA, University of Padova

2.0

Aussois, January 2009

Primal Heuristics
Crucial when exact methods don’t work

Crucial for the effectiveness of exact
methods (=B&C) for mixed integer
programming (MIP)

Need a first feasible solution to enable:

bounding!

reduced cost fixing

other improving heuristics (RINS, LB, etc...)

The Problem

We want to find a feasible solution to:

min {cTx: Ax ! b, xj integer for j ∈ J}

Notation:

polyhedron P = {x: Ax ! b}

index set of integer variables J

The Feasibility Pump 1.x

recent primal heuristic for MIPs

generates two (hopefully convergent)
trajectories of points and that satisfy
feasibility in a complementary way

Fischetti, Glover, Lodi [2003]
Bertacco, Fischetti, Lodi [2005]
 Achterberg, Berthold [2007]

linear feasible (in P)

integer feasible

x∗

x̃

x∗ x̃

Basic Scheme I

x∗ = arg min{∆(x, x̃) : x ∈ P}

Plain rounding of the
components in J to the
nearest integer

Find the point in P
closest w.r.t the L1
norm !

How to get an integral point from a fractional one?

How to get an LP-feasible point from an integral one?

x̃j =

{
[x∗j] j ∈ J

x∗j j "∈ J

Basic Scheme II
A simplified algorithm may look like this:

integer? EUREKA!

x∗

yes

no

x∗ = arg min{∆(x, x̃) : x ∈ P}

starting point x∗

x̃ = [x∗]

Cycling

What happens if we generate an already
discovered integer solution?

We are in a cycle!!!

Need some anticycling mechanisms:

weak random perturbations

strong kicks (random restarts)

Real Examples

railway_8_1_0

Good

Real Examples

Not so Good

usAbbrv.8.25.70

Fair

Real Examples

danoint

Bad!

Rounding: are we serious?

+extremely simple and fast

+ [x] is the nearest integer point to x

+ convergence IN ABSENCE of cycles

Many advantages:

BUT:

- prone to cycling (many different continuous x
may map to same integral [x])

- completely forgets P

FP 1.x: quick summary

simple primal heuristics

convergent in absence of cycles

cycles are a big problem

often feasible solutions are found because of
frequent perturbations rather than by design

simple rounding is quite blind and may fail on
trivial instances (e.g. knapsacks, set covering)

FP 2.0: Inference!
Rounding a variable means fixing
it temporarily to a value

Propagate the rounding of an integer
variable before rounding the remaining ones

Advantages:

use information from the linear constraints

hopefully still fast

akin to diving, but without solving LPs

Bound Strengthening
Savelsbergh [1994] Maros [2003] Hooker [2006] Achterberg [2007]

Given a linear constraint with positive coefficients:

and original bounds on the variables, we can
compute the minimum and maximum activities:

[lj , uj]

LB ≤
∑

ajxj ≤ UB

Lmin =
∑

aj lj Lmax =
∑

ajuj

and update variable bounds:

(can be rounded for integer variables and
generalized to constraints with negative coefficients)

xj ≤ lj +
UB − Lmin

aj

xj ≥ uj +
LB − Lmax

aj

Constraint Propagation

How do we organize constraint propagation?

We use a propagator-based approach

Basic scheme:

Schulte [2000] Actherberg[2007]

K: set of variables
Ci: constraint i
Ci ! j: Ci involves variable j
Q: set of constraints to propagate

Q " {Ci: i = 1,...,m}
while Q not empty:

Ci " pop(Q)
K " propagate(Ci)
Q " Q " {Ci: Ci ! j for some j in K}

Constraint Propagation ||
Actual implementation is more involved due to
optimizations (incremental propagation and
specific constraint structure exploitation)

What’s the complexity of all of this?

polynomial for pure binary problems

pseudo-polynomial for general integer

may not converge in a finite number of
propagations for continuous variables!

NEED TO STOP PROPAGATIONS AT SOME POINT!

FP 2.0: some remarks...

propagation can be time consuming, but is
typically fast enough

the final result depends on:

how we choose the next variable to round

the order of constraint propagators

no dominance exists between the two
versions of the FP, but FP 2.0 is strictly
better on a single feasible shot

Results: testbed
Testbed: 43 binary and 29 general integer
instances from MIPLIB 2003

Turned into feasibility problems by adding
bounds on the optimal value, as a relative
gap [10%, 100%, None] from the best known
solution

variables sorted by increasing fractionality
before propagation

3 different seeds for random perturbation

two iteration limits (IL): 20 and 250

Computational Results
Improvements w.r.t. FP 1.x

Gap

Instances IL Measure None 100% 10% Overall

binary

20
#found 15% 30% 19% 21%

iterations 32% 27% 7% 19%
time 5% 8% 3% 5%

250
#found 7% 18% 26% 14%

iterations 46% 44% 11% 25%
time 31% 57% 10% 31%

general
integers

20
#found 31% 100% 54% 53%

iterations 26% 19% 6% 16%
time 3% 9% -5% 2%

250
#found 14% 41% 42% 27%

iterations 23% 23% 8% 17%
time 4% 27% 23% 22%

Computational Results
Solution Quality

Testbed IT Gap FP1 better FP2 better equal

binary

20
10% 4 8 31
100% 5 19 19
None 7 19 17

250
10% 7 7 29
100% 8 20 15
None 9 21 13

general

integers

20
10% 2 5 22
100% 3 8 18
None 8 12 9

250
10% 2 6 21
100% 5 11 13
None 5 17 7

Overall - - 65 153 214

Conclusions

Propagation can be very effective if embedded into
the FP scheme (both for binary and general integer
instances!)

reduced number of iterations

increased success rate and solution quality, in a
comparable amount of time

What’s next?

exploit higher level modeling tools when available

turn attention to the LPs (maybe FP 3.0...)

Paper available (for Jack) at:
http://www.dei.unipd.it/~fisch/papers/

http://www.dei.unipd.it/~fisch/papers/
http://www.dei.unipd.it/~fisch/papers/

