

Matteo Fischetti – DEI, University of Padova Domenico Salvagnin – DMPA, University of Padova

Aussois, January 2009

Primal Heuristics

- Crucial when exact methods don't work
- Crucial for the effectiveness of exact methods (=B&C) for mixed integer programming (MIP)
- Need a first feasible solution to enable:
 - ø bounding!
 - reduced cost fixing
 - other improving heuristics (RINS, LB, etc...)

The Problem

We want to find a feasible solution to: min { c^Tx : Ax \geq b, x_j integer for $j \in J$ }

Notation:

Ø polyhedron P = {x: Ax ≥ b}
Ø index set of integer variables J

The Feasibility Pump 1.x

Fischetti, Glover, Lodi [2003] Bertacco, Fischetti, Lodi [2005] Achterberg, Berthold [2007]

recent primal heuristic for MIPs

generates two (hopefully convergent) trajectories of points x^* and \tilde{x} that satisfy feasibility in a complementary way

Basic Scheme I

How to get an integral point from a fractional one?

Plain rounding of the components in J to the nearest integer

$$\tilde{x}_j = \begin{cases} [x_j^*] & j \in J \\ x_j^* & j \notin J \end{cases}$$

How to get an LP-feasible point from an integral one?

Find the point in P closest w.r.t the L1 norm Δ

 $x^* = \arg\min\{\Delta(x, \tilde{x}) : x \in P\}$

Basic Scheme II

A simplified algorithm may look like this:

Cycling

- What happens if we generate an already discovered integer solution?
- We are in a cycle!!!
- Need some anticycling mechanisms:
 - weak random perturbations
 - strong kicks (random restarts)

Real Examples

Good

Real Examples

Fair

Real Examples

Bad!

Rounding: are we serious? Many advantages: + extremely simple and fast + [x] is the nearest integer point to x + convergence IN ABSENCE of cycles BUT:

 prone to cycling (many different continuous x may map to same integral [x])

- completely forgets P

FP 1.x: quick summary

- simple primal heuristics
- convergent in absence of cycles
- o cycles are a big problem
- often feasible solutions are found because of frequent perturbations rather than by design
- simple rounding is quite blind and may fail on trivial instances (e.g. knapsacks, set covering)

FP 2.0: Inference!

 Rounding a variable means fixing it temporarily to a value

Propagate the rounding of an integer variable before rounding the remaining ones

Advantages:

use information from the linear constraints
hopefully still fast
akin to diving, but without solving LPs

Bound Strengthening

Savelsbergh [1994] Maros [2003] Hooker [2006] Achterberg [2007]

Given a linear constraint with positive coefficients: $LB \leq \sum a_j x_j \leq UB$

and original bounds $[l_j, u_j]$ on the variables, we can compute the minimum and maximum activities: $L_{\min} = \sum a_j l_j$ $L_{\max} = \sum a_j u_j$ and update variable bounds: $x_j \leq l_j + \frac{UB - L_{\min}}{a_j}$ $x_j \geq u_j + \frac{LB - L_{\max}}{a_j}$

(can be rounded for integer variables and generalized to constraints with negative coefficients)

Constraint Propagation

Schulte [2000] Actherberg[2007]

How do we organize constraint propagation?
We use a propagator-based approach

Basic scheme:

K: set of variables C_i: constraint i C_i \supset j: C_i involves variable j Q: set of constraints to propagate Q \leftarrow {C_i: i = 1,...,m} while Q not empty: C_i \leftarrow pop(Q) K \leftarrow propagate(C_i) Q \leftarrow Q \cup {C_i: C_i \supset j for some j in K}

Constraint Propagation ||

Actual implementation is more involved due to optimizations (incremental propagation and specific constraint structure exploitation)

What's the complexity of all of this?

ø polynomial for pure binary problems

ø pseudo-polynomial for general integer

may not converge in a finite number of propagations for continuous variables!

NEED TO STOP PROPAGATIONS AT SOME POINT!

FP 2.0: some remarks...

propagation can be time consuming, but is typically fast enough
the final result depends on:
how we choose the next variable to round

The order of constraint propagators

no dominance exists between the two versions of the FP, but FP 2.0 is strictly better on a single feasible shot

Results: testbed

Testbed: 43 binary and 29 general integer instances from MIPLIB 2003

Turned into feasibility problems by adding bounds on the optimal value, as a relative gap [10%, 100%, None] from the best known solution

variables sorted by increasing fractionality before propagation

③ 3 different seeds for random perturbation

Two iteration limits (IL): 20 and 250

Computational Results Improvements w.r.t. FP 1.x

			Gap			
Instances	IL	Measure	None	100%	10%	Overall
binary	20	#found	15%	30%	19%	21%
		iterations	32%	27%	7%	19%
		time	5%	8%	3%	5%
	250	#found	7%	18%	26%	14%
		iterations	46%	44%	11%	25%
		time	31%	57%	10%	31%
general integers	20	#found	31%	100%	54%	53%
		iterations	26%	19%	6%	16%
		time	3%	9%	-5%	2%
	250	#found	14%	41%	42%	27%
		iterations	23%	23%	8%	17%
		time	4%	27%	23%	22%

Computational Results Solution Quality

Testbed	IT	Gap	FP1 better	FP2 better	equal
binary		10%	4	8	31
	20	100%	5	19	19
		None	7	19	17
		10%	7	7	29
	250	100%	8	20	15
		None	9	21	13
general		10%	2	5	22
	20	100%	3	8	18
		None	8	12	9
integers		10%	2	6	21
	250	100%	5	11	13
		None	5	17	7
Overall	-	-	65	153	214

Conclusions

Propagation can be very effective if embedded into the FP scheme (both for binary and general integer instances!)

reduced number of iterations

increased success rate and solution quality, in a comparable amount of time

What's next?

exploit higher level modeling tools when available
turn attention to the LPs (maybe FP 3.0...)

Paper available (for Jack) at: http://www.dei.unipd.it/~fisch/papers/