The Feasibility Pump

T

Matteo Fischetti - DEI, University of Padova
Domenico Salvagnin - DMPA, University of Padova

Aussols, January 2009

Primal Heuristics

@ Crucial when exact methods dont work

@ Crucial for the effectiveness of exact
methods (=B&C) for mixed integer
programming (MIP)

® Need a first feasible solution to enable:
@ bounding
@ reduced cost fixing

@ other improving heuristics (RINS, LB, etc...)

The Problem

We want to find a feasible solution to:

min {c'x: AX 2 b, X; integer for j € J}

Notation:

@ polyhedron P = {x: Ax > b}

@ index set of infeger variables J

The Feasibility Pump 1.x

Fischetti, Glover, Lodi [2003]
Bertacco, Fischetti, Lodi [2005]
Achterberg, Berthold [2007]

@ recent primal heuristic for MIPs

@ generates two (hopefully convergent)
trajectories of points " and = that satisfy
feasibility in a complementary way

linear feasible (in P)

\ /\ x*/\ v

/ wy s TR
\/ integer feasible

Basic Scheme 1

How to get an integral point from a fractional one?

Plain rounding of the 2] GeJ
components in J to the T; = { L

J * : J
nearest integer pos, J ¢

How to get an LP-feasible point from an integral one?

Find the point in P

closest w.r.t the L; r" = argmin{A(x,z) : x € P}
norm A

Basic Scheme 11

A simplified algorithm may look like this:

Cycling

@ What happens if we generate an already
discovered integer solution?

® We are in a cycle!ll
@ Need some anticycling mechanisms:
@ weak random perturbations

@ strong kicks (random restarts)

Real Examples

Good

Real Examples

usAbbrv.8.25.70

Fair

Real Examples

Bad!

Rounding: are we serious?

Many advantages:

+ extremely simple and fast

+ [x] is the nearest integer point to x

+ convergence IN ABSENCE of cycles
BUT:

— prone to cycling (many different continuous x
may map to same integral [x])

— completely forgets P

FP 1.x: quick summary

@ simple primal heuristics e ‘
ple p 9 \,

@ convergent in absence of cycles —
@ cycles are a big problem

® often feasible solutions are found because of
frequent perturbations rather than by design

@ simple rounding is quite blind and may fail on
trivial instances (e.g. knapsacks, set covering)

FP 2.0: Inference! 7

@ Rounding a variable means fixing
It temporarily to a value

@ Propagate the rounding of an infeger
variable before rounding the remaining ones

@ Advantages:
@ use information from the linear constraints
@ hopefully still fast

@ akin to diving, but without solving LPs

Bound Strengthening

Savelsbergh [1994] Maros [2003] Hooker [2006] Achterberg [2007]

Given a linear constraint with positive coefficients:
LB <) ajz; <UB

and original bounds |/;,u;|on the variables, we can
compute the minimum and maximum activities:

Lmin b Z ajlj Lmax — Z a;U;

and update variable bounds:
UB — Lmin | L5 — Lmax
a 4 J

(can be rounded for integer variables and
generalized to constraints with negative coefficients)

Constraint Propagation

Schulte [2000] Actherberg[2007]
@ How do we organize constraint propagation?
@ We use a propagator-based approach

® Basic scheme:

K: set of variables

Ci: constraint |

Ci O j: Ci involves variable j

Q: set of constraints to propagate

Q « {C:i=1,.,m}
while Q not empty:
Ci < pop(Q)
K « propagate(Ci)
Q < Qu {Ci: Ci > j for some j in K}

Constraint Propagation ||

@ Actual implementation is more involved due fo
optimizations (incremental propagation and
specific constraint structure exploitation)

@ What's the complexity of all of this?
@ polynomial for pure binary problems
@ pseudo-polynomial for general integer

@ may not converge in a finite number of
propagations for continuous variables!

NEED TO STOP PROPAGATIONS AT SOME POINT!

FP 2.0: some remarkes...

@ propagation can be time consuming, but is
typically fast enough

@ the final result depends on:
@ how we choose the next variable to round
@ the order of constraint propagators

@ no dominance exists between the two
versions of the FP, but FP 2.0 is strictly
better on a single feasible shot

Results: testbed

@ Testbed: 43 binary and 29 general integer
instances from MIPLIB 2003

@ Turned into feasibility problems by adding
bounds on the opfimal value, as a relative

gap [10%, 100%, None] from the best known
solution

@ variables sorted by increasing fractionality
before propagation

@ 3 different seeds for random perturbation

@ two iteration limits (IL): 20 and 250

Computational Results

Improvements w.r.t. FP 1.x

Instances IL Measure None 100% 10%| Overall
#found 15% 30%
iterations 32% 27 %
time 5% 8%
#found
iterations
time
#found
iterations

general time
integers #found
250 Iterations

time

Computational Results
Solution Quality

Testbed Gap FP1 better FP2 better equal

10% 8 31
100% 19 19
None 19 17

N

10% 7 29
100% 20 15
None 21 13

10% 5 22
100% 8 18
general None 12 9

integers 10% 6 2l
100% 11 13
None 17 4

Ol U1 PD|CO0 W D[V 00 NN Ul

o
n

Overall -

Conclusions

@ Propagation can be very effective if embedded into
the FP scheme (both for binary and general integer
instances!)

@ reduced number of iterations

@ Increased success rate and solution quality, in a
comparable amount of time

@ What's next?
@ exploit higher level modeling tools when available

@ turn attention to the LPs (maybe FP 3.0..)

Paper available (for Jack) at:

http://www.dei.unipd.it/ ~fisch/papers/

http://www.dei.unipd.it/~fisch/papers/
http://www.dei.unipd.it/~fisch/papers/

