
Introduction Network Detection Separation

Finding Embedded Multi-Commodity Flow

Submatrices in MIPs
and

Separation of Cutset Inequalities

Christian Raack Tobias Achterberg

Cooperation of the Zuse-Institute Berlin and ILOG

Aussois 2009

Introduction Network Detection Separation

Outline

Introduction
Network Detection
Separation

Introduction Network Detection Separation

Introduction

min cx

s.t. Ax ≤ b, x ∈ Z
I × R

C (MIP)

Cutting Planes in Cplex

clique, cover, disjunctive, flow cover, flow path, gomory, gub,
implied bounds, mir, zero-half

• Rather general – work for most MIPs

• Not “consequently” exploit structure of constraint matrix A

• No “real” knowledge about the underlying problem

Introduction Network Detection Separation

Introduction

min cx

s.t. Ax ≤ b, x ∈ Z
I × R

C (MIP)

Idea

• Tons of polyhedral studies for special problems
→ network design, facility location, scheduling, steiner tree ...

• Results (facets) not used in general MIP solvers except for
“simple” relaxations such as knapsack sets, single node flow
sets, stable set relaxations

• Why not investing more time for problem identification ?

• And generate (more) problem specific cutting planes !

Introduction Network Detection Separation

Coupled Multi-Commodity Flow (MCF)
c
a
p
a
c
it

y
fl

o
w

c
o
n
se

rv
a
ti

o
n

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

1 1 1

1 1 1

-C

-C

block structure: flow for every commodity, network matrix N

coupling: capacity constraints for arcs, Flow(a) ≤ Capacity(a)

Introduction Network Detection Separation

Network Design

given potential network topology,
user demands, link capacities

find dimensioning of the links
+ MCF flow

such that demands are satisfied and
(some) cost is minimal

Applications: telecommunication, public transport, ...
Modeling: link-flow formulation

MCF flow

Capacity

→

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

1 1 1

1 1 1

-C

-C

Introduction Network Detection Separation

Introduction
Network Detection
Separation

Introduction Network Detection Separation

Network Detection – Single-Commodity

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1

N →

Network detection (in the context of the network simplex):

Literature: Brown & Wright [84], Bixby & Fourer [88],
Gülpinar et al. [98, 04], Gutin & Zverovitsch [04],
Figueiredo & Labbe & Souza [07]

Approaches: Row/column-scanning addition/deletion,
Signed graphs, IP formulation

We use Row scanning addition, it is simple, fast, and successful

Introduction Network Detection Separation

Network detection – Single-Commodity

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1

N →

Row Scanning Addition [BixbyFourer ’88]

• Start with empty set of rows

• Add adjacent flow row so that the subset remains a network
→ Valid network submatrix after every step

• If necessary scale and/or reflect rows

Introduction Network Detection Separation

Network detection – Single-Commodity

-1 1
1

1
-1 -1

-1 1

-1
1 1 -1

→

Row Scanning Addition [BixbyFourer ’88]

• Start with empty set of rows

• Add adjacent flow row so that the subset remains a network
→ Valid network submatrix after every step

• If necessary scale and/or reflect rows

Introduction Network Detection Separation

Network detection – Single-Commodity

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
→

Row Scanning Addition [BixbyFourer ’88]

• Start with empty set of rows

• Add adjacent flow row so that the subset remains a network
→ Valid network submatrix after every step

• If necessary scale and/or reflect rows

Introduction Network Detection Separation

Network detection – Single-Commodity

-1 1
1

1
-1 -1

-1

-1 1

-1
1 1

→

Row Scanning Addition [BixbyFourer ’88]

• Start with empty set of rows

• Add adjacent flow row so that the subset remains a network
→ Valid network submatrix after every step

• If necessary scale and/or reflect rows

Introduction Network Detection Separation

Network detection – Single-Commodity

1
-1 1

1
1

-1 -1

-1

-1 1

-1
1

→

Row Scanning Addition [BixbyFourer ’88]

• Start with empty set of rows

• Add adjacent flow row so that the subset remains a network
→ Valid network submatrix after every step

• If necessary scale and/or reflect rows

Introduction Network Detection Separation

Network detection – Single-Commodity

1
-1 1

1
1

-1 -1

-1

-1 1

-1
1

→

Row Scanning Addition [BixbyFourer ’88]

• Start with empty set of rows

• Add adjacent flow row so that the subset remains a network
→ Valid network submatrix after every step

• If necessary scale and/or reflect rows

Introduction Network Detection Separation

Network Detection – Multi-Commodity

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

→

• Row Scanning Addition→ one graph, several components

• How can we detect isomorphism of components ?

→ Bad News: Complexity of GraphIsomorphism unknown

Introduction Network Detection Separation

Network Detection – Multi-Commodity

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

1 1 1

1 1 1

-C

-C

→

• Row Scanning Addition→ one graph, several components

• How can we detect isomorphism of components ?

→ Bad News: Complexity of GraphIsomorphism unknown
→ Good News: We can hopefully use the coupling constraints !!

Introduction Network Detection Separation

Network Detection – Challenges

• User preprocessing:
Omitting one flow row per commodity
=⇒ different node missing per commodity

No flow into source nodes
=⇒ different arcs missing per commodity

• Solver preprocessing:
Fixing, Substituting
=⇒ deletes loosely connected nodes

(in some commodities)

• Various model formulations
(directed, undirected, single path,...)

• Additional side constraints

Introduction Network Detection Separation

Network Detection – Algorithm

1. Flow Detection
• Identify and sort flow row candidates
• Row Scanning Addition
• Throw away trash (small components)

Result: Flow system with several components
→ flow variables ↔ commodity-id, flow row ↔ commodity-id

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

→

Introduction Network Detection Separation

Network Detection – Algorithm

2. Arc Detection
• Identify and sort capacity row candidates
• capacity row should have entry in most of the commodities
• Assign arc-id to capacity row and corresponding flow variables

Result: Arcs known
→ flow variable ↔ arc-id, capacity row ↔ arc-id

1
1

1
1

-1 -1

-1

-1 1

-1
N

1
1

1
1

-1 -1

-1

-1 1

-1
N

1
1

1
1

-1 -1

-1

-1 1

-1
N

1 1 1
1 1 1

-C
-C

1
-1

1
-1

1
-1

→

Introduction Network Detection Separation

Network Detection – Algorithm

3. Node Detection
• Assign node-id to flow rows (in different commodities) with

similar incidence pattern w.r.t arc-ids

Result: Nodes known
→ flow row ↔ node-id

1

1
1

-1

-1

-1

N

1

1
1

-1

-1

-1

N

1

1
1

-1

-1

-1

N

1 1 1

1 1 1

-C

-C

-1 1 -1

-1

1 -1

1

1

-1

1
1

-1

1

-1

-1
1 -1

1

1 2 6

1 2 6

1 2 6
→

1

2
6

1

2
6

6
2

1

Introduction Network Detection Separation

Network Detection – Algorithm

4. Construct MCF network
• Construct incidence function of graph
• Ask all flow variables of an arc for source (target)
• Majority vote wins
• inconsistency count += sum of minority votes

Result: MCF network + measure for quality of detection

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

1
-1 1

1

1
1

-1 -1

-1

-1 1

-1
N

1 1 1

1 1 1

-C

-C

→

Introduction Network Detection Separation

Network Detection – Results
set # origin description

arc.set 35 A. Atamtürk MCF, unsplittable and splittable, binary cap
avub 60 A. Atamtürk randomly generated, SCF, binary caps + GUB
cut.set 15 A. Atamtürk MCF, integer caps
fc 20 A. Atamtürk SCF, fixed charge, binary cap
fctp 28 J. Gottlieb SCF, complete bipartite, binary cap
sndlib 52 ZIB MCF, integer caps or binary caps +GUB
ufcn 84 L.A. Wolsey SCF, fixed charge, binary cap, big M

• Network known for roughly half of the instances
(# nodes, # arcs, # commodities, demands, capacities)

• SCIP preprocessing off: Detection works correctly, cut.set fails
inconsistency ratio = 0.0032 (all - cut.set), ≫ 1 (cut.set)

• SCIP preprocessing on: Detected works but graphs are smaller
inconsistency ratio = 0.01 (all - cutset), ≫ 1 (cut.set)
detected graphs have -22% nodes, -15% arcs

• inconsistency ratio = # inconsistencies / # arcs / # coms

Introduction Network Detection Separation

Introduction
Network Detection
Separation

Introduction Network Detection Separation

Separation – Approach

Given:

• MCF network

• flow row ↔ node/commodity, capacity row ↔ arc

Idea:

• Use well known machinery for network design problems

• Classical cutting planes, known successful separation routines

• Separate cut based inequalities (e.g. cutset ineqs)

Difference:

• We cannot directly work on the graph

• Modify general c-Mixed Integer Rounding framework
(c-MIR – Marchand & Wolsey [98])

• Use network based row aggregation heuristic

• Switch on separation only if inconsistency ratio small (< 0.2) !

Introduction Network Detection Separation

Separation – Finding network cuts

Basic Idea: Bienstock et. al [98], Günlük [99]

• Find tight cut → Capacity(cut) = Flow(cut)

• Motivation: tight base inequalities→ violated MIR inequalities

• For arc a define weight wa = slack(a)− |dual(a)|
w.r.t. capacity constraint of a

• Contract arcs with large weight to get small network partition
(e.g. size 2-8, we used size 4)

5

0

0
-3

15

-3
-2

0

-1

-3

Introduction Network Detection Separation

Separation – Finding network cuts

Basic Idea: Bienstock et. al [98], Günlük [99]

• Find tight cut → Capacity(cut) = Flow(cut)

• Motivation: tight base inequalities→ violated MIR inequalities

• For arc a define weight wa = slack(a)− |dual(a)|
w.r.t. capacity constraint of a

• Contract arcs with large weight to get small network partition
(e.g. size 2-8, we used size 4)

5

0

0
-3

15

-3
-2

0

-1

-3

Introduction Network Detection Separation

Separation – Finding network cuts

Basic Idea: Bienstock et. al [98], Günlük [99]

• Find tight cut → Capacity(cut) = Flow(cut)

• Motivation: tight base inequalities→ violated MIR inequalities

• For arc a define weight wa = slack(a)− |dual(a)|
w.r.t. capacity constraint of a

• Contract arcs with large weight to get small network partition
(e.g. size 2-8, we used size 4)

5

0

0
-3

15

-3
-2

0

-1

-3

Introduction Network Detection Separation

Separation – Finding network cuts

Basic Idea: Bienstock et. al [98], Günlük [99]

• Find tight cut → Capacity(cut) = Flow(cut)

• Motivation: tight base inequalities→ violated MIR inequalities

• For arc a define weight wa = slack(a)− |dual(a)|
w.r.t. capacity constraint of a

• Contract arcs with large weight to get small network partition
(e.g. size 2-8, we used size 4)

5

0

0
-3

15

-3
-2

0

-1

-3

Introduction Network Detection Separation

Separation – Finding network cuts

Basic Idea: Bienstock et. al [98], Günlük [99]

• Find tight cut → Capacity(cut) = Flow(cut)

• Motivation: tight base inequalities→ violated MIR inequalities

• For arc a define weight wa = slack(a)− |dual(a)|
w.r.t. capacity constraint of a

• Contract arcs with large weight to get small network partition
(e.g. size 2-8, we used size 4)

5

0

0
-3

15

-3
-2

0

-1

-3

Enumerate all cuts in the
resulting partition

Introduction Network Detection Separation

Separation – Row aggregation and MIR

L

S

d
+

→
1

-1 1
1

1
1

-1 -1

-1

-1 1

-1

{

{

L

S

Given S ⊂ V and corresponding cut L = L+ ∪ L−.

Introduction Network Detection Separation

Separation – Row aggregation and MIR

L

S

d
+

→
1

-1 1
1

1
1

-1 -1

-1

-1 1

-1

{

{

L

S

Given S ⊂ V and corresponding cut L = L+ ∪ L−.

• Add all flow rows w.r.t. S (for commodities with source in S).
→ f (L+)− f (L−) = d+ > 0 Cancellation!

Introduction Network Detection Separation

Separation – Row aggregation and MIR

L

S

d
+

→
1

-1 1
1

1
1

-1 -1

-1

-1 1

-1

{

{

L

S

Given S ⊂ V and corresponding cut L = L+ ∪ L−.

• Add all flow rows w.r.t. S (for commodities with source in S).
→ f (L+)− f (L−) = d+ > 0 Cancellation!

• Add all capacity constraints for L+: Cx(L+)− f (L+) ≥ 0
→ Cx(L+)− s ≥ d+ (base inequality)

Introduction Network Detection Separation

Separation – Row aggregation and MIR

L

S

d
+

→
1

-1 1
1

1
1

-1 -1

-1

-1 1

-1

{

{

L

S

Given S ⊂ V and corresponding cut L = L+ ∪ L−.

• Add all flow rows w.r.t. S (for commodities with source in S).
→ f (L+)− f (L−) = d+ > 0 Cancellation!

• Add all capacity constraints for L+: Cx(L+)− f (L+) ≥ 0
→ Cx(L+)− s ≥ d+ (base inequality)

• Divide by C > 0 (one of the coeffs) and apply MIR

→ x(L+) ≥
⌈

d+

C

⌉

(MIR cutset inequality)

Introduction Network Detection Separation

Separation – Row aggregation and MIR

L

S

d
+

→
1

-1 1
1

1
1

-1 -1

-1

-1 1

-1

{

{

L

S

Given S ⊂ V and corresponding cut L = L+ ∪ L−.

• Add all flow rows w.r.t. S (for commodities with source in S).
→ f (L+)− f (L−) = d+ > 0 Cancellation!

• Add all capacity constraints for L+: Cx(L+)− f (L+) ≥ 0
→ Cx(L+)− s ≥ d+ (base inequality)

• Divide by C > 0 (one of the coeffs) and apply MIR

→ x(L+) ≥
⌈

d+

C

⌉

(MIR cutset inequality)

Aggregation of many rows, nevertheless sparse inequality

Introduction Network Detection Separation

Separation – Results

• 2 testsets, instances solvable within 1 hour with SCIP 1.1

• Network Design instances: 180, SCIP team testset: 329

ND SCIP team

size 180 329
network found 177 246
small inconsistency 165 80
violated ineqs 157 44
time ratio 0.63 0.95
node ratio 0.55 0.79

• ratios: geometric mean of time_mcf + 1
time_default + 1

and nodes_mcf + 50
nodes_default + 50

• geometric mean over instances with separated inequalities

• no time increase for the rest→ fast detection, fast separation

	Introduction
	

	Network Detection
	

	Separation
	

