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Introduction

Combinatorial Optimization Problem CO

Consider any CO with decision variables xj ∈ {0, 1}, j ∈ V , and a
feasible domain x ∈ S .

Conflict Structure

Add disjunctive constraints for some pairs of variables:

xi + xj ≤ 1 for (i , j) ∈ E ⊂ V × V

=⇒ at most one of the two variables i , j can be set to 1.

Representation by a conflict graph G = (V , E )

Edges in G connect conflicting variables of CO.
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Introduction

Relation to Independent Set (IS)

Feasible domain for CO problem with a conflict graph:
Intersection of S with an independent / stable set problem in G

Complexity

IS is already strongly NP-hard, no constant approximation ratio
=⇒ adding an IS condition makes CO (much) more difficult.

One main direction of research:
Identify special graph classes for the conflict graph G such that the
considered CO problem

is polynomially solvable

permits a (fully) polynomial approximation scheme

has a constant approximation ratio
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Conflict Graphs: Bin Packing

Conflicting items must be in different bins

Jansen, Öhring ’97: 5/2- resp. 2 + ε-approximation for special
graph classes; improved by Epstein, Levin ’06 (also on-line)

Epstein et al.’08: extension to two dimensional packing of
squares

Jansen ’99: A-FPTAS for special graph classes

e.g.: perfect, bipartite, interval, d-inductive graphs.
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Conflict Graphs: Bin Packing

Conflicting items must be in different bins

Jansen, Öhring ’97: 5/2- resp. 2 + ε-approximation for special
graph classes; improved by Epstein, Levin ’06 (also on-line)

Epstein et al.’08: extension to two dimensional packing of
squares

Jansen ’99: A-FPTAS for special graph classes

e.g.: perfect, bipartite, interval, d-inductive graphs.

Gendreau et al.’04: heuristics and lower bounds

Malaguti et al.’07: hybrid tabu search

Malaguti et al.’08: exact algorithm (branch-and-price)
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Baker, Coffman ’96; Bodlaender, Jansen ’93;
polynomially solvable special cases, special graph classes.
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Conflict Graphs: Scheduling

Mutual Exclusion Scheduling

Schedule unit-length jobs on m machines, conflicting jobs not to
be executed in the same time interval.

Baker, Coffman ’96; Bodlaender, Jansen ’93;
polynomially solvable special cases, special graph classes.

Scheduling with Incompatible Jobs

Conflicting jobs not to be executed on the same machine.

Bodlaender, Jansen, Woeginger ’94:
approximation algorithms for special graph classes.
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(KCG) max
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j=1 wjxj ≤ c

(i , j) ∈ E =⇒ xi + xj ≤ 1

xj ∈ {0, 1}
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Knapsack Problem with Conflict Graph (KCG)

Vertices (=items) adjacent in G cannot be packed together in the
knapsack!

ILP-Formulation

(KCG) max
∑n

j=1 pjxj

s.t.
∑n

j=1 wjxj ≤ c

(i , j) ∈ E =⇒ xi + xj ≤ 1

xj ∈ {0, 1}

Introduce upper bound P on optimal solution, e.g. P :=
∑n

j=1 pj

Note: Classical Greedy algorithm can perform as bad as possible!



Introduction Knapsack Problem KCG on Trees Chordal Graph FPTAS MST

Literature on KCG

Exact Algorithms and Heuristics

Yamada et al. ’02: introduce the problem, present heuristic
and exact algorithms (based on Lagrangean relaxation)



Introduction Knapsack Problem KCG on Trees Chordal Graph FPTAS MST

Literature on KCG

Exact Algorithms and Heuristics

Yamada et al. ’02: introduce the problem, present heuristic
and exact algorithms (based on Lagrangean relaxation)

Hifi, Michrafy ’06: reactive local search algorithm

Hifi, Michrafy ’07: exact algorithms (refined
branch-and-bound strategy)



Introduction Knapsack Problem KCG on Trees Chordal Graph FPTAS MST

Literature on KCG

Exact Algorithms and Heuristics

Yamada et al. ’02: introduce the problem, present heuristic
and exact algorithms (based on Lagrangean relaxation)

Hifi, Michrafy ’06: reactive local search algorithm

Hifi, Michrafy ’07: exact algorithms (refined
branch-and-bound strategy)

no special graph classes considered!
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Knapsack Problem with Conflict Graph (KCG)

Our Goal

Identify special graph classes, where KCG can be solved in
pseudo-polynomial time and permits an FPTAS.

Our Results

Pseudo-polynomial time algorithms and FPTAS for KCG on:

Trees

Graphs with Bounded Treewidth

Chordal Graphs
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Idea for KCG on Trees

Basic Observation

b

bb

b

Apply Dynamic Programming by Profits
=⇒ Scaling yields FPTAS
We use Dynamic Programming by Reaching
moving bottom up in the conflict tree.
For every vertex i :
Determine the solution of the subproblem
defined by the subtree rooted in i .

Notation

zi (d) solution with profit d and minimal weight found in the
subtree T (i) with item i necessarily included.
yi (d) solution with profit d and minimal weight found in the
subtree T (i) with item i excluded.
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Algorithmic Details

Tree traversed in Depth-First-Search-Order (DFS)

Vertex r excluded

bb

b
r

j

excluded

for every child j of r :
yr (d) = mink {yr (d − k) + min {zj(k), yj(k)}}

Vertex r included

bb

b
r

j

included

for every child j of r :
zr (d) = mink {zr (d − k) + yj(k)}

Running time: O(nP2) Space: O(nP) (trivial version)
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Space Reduction Method

Worst case without reduction: O(nP)
b

b b

bb

b

b

b

b

b

processed
merged

storage space allocated

processed
merged

storage space allocated

O(n)

Choosing the left child in every
step allocates O(n) storage arrays.

By choosing the right child vertex,
only two arrays would be necessary.

In general: Space can be reduced to O(log n) arrays.

Worst-case: Complete binary tree
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most (ld(n) + 1) ∗ O(k) space.
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Space Reduction Method (general)

Property 1. Tree T processed in DFS order with following rule:
Take child vertex j , whose subtree contains the largest number of
vertices.

Property 2. Each vertex of T requires O(k) space for processing.

Property 3. Merging child j to parent i requires 2 ∗ O(k) space.

Lemma 1. An algorithm A fulfilling Properties 1, 2 and 3 uses at
most (ld(n) + 1) ∗ O(k) space.

Sketch of Proof. r has k childs i1 . . . ik so that |T (ij)| ≤
n
2 and

w.l.o.g |T (i1)| ≥ |T (ij)| for all j ∈ {1 . . . k}:
Then the processing of T (i1) is done by using at most
(ld(n

2 ) + 1) ∗ O(k) = ld(n) ∗ O(k) space. After merging this
subtree to r this space can be deallocated, but O(k) space is used
at vertex r , which has to be kept until A has finished.
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Tree-Decomposition of graph G = (V , E )

Every graph can be represented by a tree whose vertices are
subsets of V .
Original graph can be reproduced from the tree-decomposition.
E.g. adjacent vertices of G must be jointly contained in at least
one subset.

Treewidth: minimal cardinality over all tree-decompositions of the
largest subset−1.
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Bounded Treewidth

Tree-Decomposition of graph G = (V , E )

Every graph can be represented by a tree whose vertices are
subsets of V .
Original graph can be reproduced from the tree-decomposition.
E.g. adjacent vertices of G must be jointly contained in at least
one subset.

Treewidth: minimal cardinality over all tree-decompositions of the
largest subset−1.

Example

b

b b

b

b b

b

b
a

b
c

d e
f

g
h a bc

a
c

c

f
f

a

d
e

g g h
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Bounded Treewidth

Treewidth

Treewidth indicates “how far is the graph away from a tree”.

trees have treewidth 1

series parallel graphs have treewidth 2

. . .

Nice Tree-Decomposition

For algorithmic purposes, the structure of the decomposition is
restricted to four simple configurations.

A nice tree-decomposition with the same treewidth can be
computed from a tree-decomposition in O(n) time.
[cf. Bodlaender, Koster ’08]

Many NP-hard problems can be solved efficiently for graphs with
bounded treewidth. [Bodlaender ’97]
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Solving KCG with Bounded Treewidth

Algorithmic Idea

Take a nice tree-decomposition T of G

Process T in a DFS way.

For every vertex of T (i.e. a subset of V ):
Consider all independent sets (IS) of all vertices in T explicitly.
Note: Number of IS is constant!
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Note: Number of IS is constant!

Perform dynamic programming and consider inclusion or exclusion
for every IS.
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Solving KCG with Bounded Treewidth

Algorithmic Idea

Take a nice tree-decomposition T of G

Process T in a DFS way.

For every vertex of T (i.e. a subset of V ):
Consider all independent sets (IS) of all vertices in T explicitly.
Note: Number of IS is constant!

Perform dynamic programming and consider inclusion or exclusion
for every IS.

Time and Space

KCG for conflict graphs of bounded treewidth can be solved in
O(nP2) time and O(log n P + n) space given a tree-decomposition.

The space reduction method of Lemma 1 can be applied again!
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=⇒ every cycle of at least four vertices has a chord.
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Chordal Graphs

Definition

A Chordal Graph (a.k.a. triangulated graph) does not contain
induced cycles other than triangles.

=⇒ every cycle of at least four vertices has a chord.

Example

b

b

b
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Chordal Graphs

Bounded Treewidth versus Chordal Graph

No subset relation!

ChordalBounded

Kn
series parallel

Tree
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Solving KCG on Chordal Graphs

Tree Representation

For every chordal graph G there is a clique tree T = (K, E):
maximal cliques K of G are vertices of T

for each vertex v ∈ G :
all cliques K containing v induce a subtree in T .

cf. [Blair, Peyton ’93]
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Solving KCG on Chordal Graphs

Tree Representation

For every chordal graph G there is a clique tree T = (K, E):
maximal cliques K of G are vertices of T

for each vertex v ∈ G :
all cliques K containing v induce a subtree in T .

cf. [Blair, Peyton ’93]

Basic Idea of the Algorithm

The vertices of the clique tree T are complete subgraphs.
=⇒ at most one vertex of each clique can be in the knapsack.

Process T in a DFS way.
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Solving KCG on Chordal Graphs

Dynamic Programming Definition

f v
d (I ):
solution with profit d and minimal weight containing item v ∈ I ,
while considering in the clique tree only the subtree rooted in I .

definition extended to v = ∅.
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Vertex R with one (or first) child J
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Solving KCG on Chordal Graphs

Vertex R with one (or first) child J
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d e

J

for v ∈ R:
if v ∈ R ∩ J: {b, c}

f v
d (R) = f v

d (J)
else: {a}

f v
d (R) = w(v)+

mini

{

f i
d−p(v)(J) : i ∈ (J \ R) ∪ ∅

}

f ∅d (R) = mini

{

f i
d (J) : i ∈ (J \ R) ∪ ∅

}
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Solving KCG on Chordal Graphs

Vertex R with second child J

b

b b

b b

a

b c

d e

a b c
R

J

b c
d e

b

b

bb

f

g
h

a f
g h

for v ∈ R:
if v ∈ R ∩ J: {a}
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d (R) =
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{

f v
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d−k+p(v)(J)
}

f v
d (R) = f v

d (R) − w(v)
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Solving KCG on Chordal Graphs

Vertex R with second child J

b

b b

b b

a

b c

d e

a b c
R

J

b c
d e

b

b

bb

f

g
h

a f
g h

for v ∈ R:
if v ∈ R ∩ J: {a}

f v
d (R) =

mink

{

f v
k (R) + f v

d−k+p(v)(J)
}

f v
d (R) = f v

d (R) − w(v)
else: {b, c}

f v
d (R) =

mini ,k

{

f v
k (R) + f i

d−k(J) : i ∈ (J \ R) ∪ ∅
}
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Solving KCG on Chordal Graphs

Vertex R with second child J

b

b b

b b

a

b c

d e

a b c
R

J

b c
d e

b

b

bb

f

g
h

a f
g h

for v ∈ R:
if v ∈ R ∩ J: {a}

f v
d (R) =

mink

{

f v
k (R) + f v

d−k+p(v)(J)
}

f v
d (R) = f v

d (R) − w(v)
else: {b, c}

f v
d (R) =

mini ,k

{

f v
k (R) + f i

d−k(J) : i ∈ (J \ R) ∪ ∅
}

f ∅d (R) = mini ,k

{

f ∅k (R) + f i
d−k(J) : i ∈ (J \ R) ∪ ∅

}
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Solving KCG on Chordal Graphs

Running Time

Straightforward: O(n4P2)

Taking a closer look: O(n2P2)

Space

O(n log n P) with space reduction technique!

Storing Solution Sets (for all three algorithms)

Note: Storing not only solution values but solution sets increases
time and space by a factor of n (or log n for bit-encoding).

This can be avoided by applying a general recursive divide and
conquer technique (see Pferschy ’99).
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Deriving an FPTAS from Dynamic Programming

Scaling

Classical approach of an FPTAS for the knapsack problem:
Scale profits:

p̃j =

(

n

εpmax

)

pj

Running time:

n · P scaling−→ n · P̃ ≤ n · n p̃max = n2

(

n

εpmax

)

pmax =
n3

ε

Induced relative error can be bounded by ε.
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Deriving an FPTAS from Dynamic Programming

Scaling

Classical approach of an FPTAS for the knapsack problem:
Scale profits:

p̃j =

(

n

εpmax

)

pj

Running time:

n · P scaling−→ n · P̃ ≤ n · n p̃max = n2

(

n

εpmax

)

pmax =
n3

ε

Induced relative error can be bounded by ε.

FPTAS for KCG

Same scaling approach can be applied to all three KCG algorithms.
Technical details rather straightforward.
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Minimum Spanning Tree with Conflict Graph (MSTCG)

Problem Description

given:
a weighted graph H = (V , E , w),
a conflict graph G = (E , Ē ) whose m vertices correspond
uniquely to edges in E .

edge ē = (i , j) ∈ Ē =⇒ conflict between the two edges i , j ∈ E



Introduction Knapsack Problem KCG on Trees Chordal Graph FPTAS MST

Minimum Spanning Tree with Conflict Graph (MSTCG)

Problem Description

given:
a weighted graph H = (V , E , w),
a conflict graph G = (E , Ē ) whose m vertices correspond
uniquely to edges in E .

edge ē = (i , j) ∈ Ē =⇒ conflict between the two edges i , j ∈ E

Problem (MSTCG):
find a minimum spanning tree T ⊆ E of H

without conflicts w.r.t. G
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Minimum Spanning Tree with Conflict Graph (MSTCG)

Question:
For which type of conflict graph does MSTCG become NP-hard?

Definition

2-ladder: graph whose components are paths of length one.

3-ladder: graph whose components are paths of length two.

2-ladder

r r

r r

r r

r r

3-ladder

r r r

r r r

r r r

r r r

(imagine a rope ladder)
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Minimum Spanning Tree with Conflict Graph (MSTCG)

Question:
For which type of conflict graph does MSTCG become NP-hard?

Definition

2-ladder: graph whose components are paths of length one.

3-ladder: graph whose components are paths of length two.

Our Complexity Results

MSTCG is polynomially solvable if the conflict graph G

is a 2-ladder.

MSTCG is strongly NP-hard if the conflict graph G

is a 3-ladder.
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MSTCG with a 2-ladder

Conflict-free Matroid

Subsets of edges NOT containing any conflicting pair define the
conflict-free matroid:

I :=
{

E ′ ⊆ E | ∄(e, f ) ∈ Ē : {e, f } ⊆ E ′
}

Note that in a 2-ladder conflicting pairs are independent from each
other.
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MSTCG with a 2-ladder

Conflict-free Matroid

Subsets of edges NOT containing any conflicting pair define the
conflict-free matroid:

I :=
{

E ′ ⊆ E | ∄(e, f ) ∈ Ē : {e, f } ⊆ E ′
}

Note that in a 2-ladder conflicting pairs are independent from each
other.

=⇒ MSTCG is the intersection of the graphic matroid (MST) with
the conflict-free matroid

Matroid Intersection

MSTCG with a 2-ladder can be solved by Edmonds’ weighted
matroid intersection algorithm in polynomial time.
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MSTCG with a 3-ladder

Complexity Result

MSTCG with a 3-ladder is strongly NP-hard.
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MSTCG with a 3-ladder

Complexity Result

MSTCG with a 3-ladder is strongly NP-hard.

Construction

Reduction from the special case of 3-SAT, where each variable
occurs in at most 5 clauses (still NP-complete).

Construct an instance of MST and a 3-ladder conflict graph as
follows:
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MSTCG with a 3-ladder

b

b b b

bbb

bbb

b

b

b

b

b

b b

b b

b b

b b

b

b1 b̄1

C1

x1 x̄1

h11

g11

f11

e11 ∆11

y1 ȳ1

1

2

z14

z13

z12

z11

w14

w13

w12

w11

w10

1 1 1

a1 ā1

For every clause, e.g.
C1, a fork represents the
three literals.
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x1 x̄1
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f11

e11 ∆11

y1 ȳ1

1
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z14
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z11

w14

w13

w12

w11

w10

1 1 1

a1 ā1

For every clause, e.g.
C1, a fork represents the
three literals.

For every variable, two
gadgets represent x1

and x̄1.
Edges w1j , z1j for the
≤ 5 clauses variable 1
appears in.
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MSTCG with a 3-ladder

b

b b b

bbb

bbb

b

b

b

b

b

b b

b b

b b

b b

b

b1 b̄1

C1

x1 x̄1

h11

g11

f11

e11 ∆11

y1 ȳ1

1

2

z14

z13

z12

z11

w14

w13

w12

w11

w10

1 1 1

a1 ā1

For every clause, e.g.
C1, a fork represents the
three literals.

For every variable, two
gadgets represent x1

and x̄1.
Edges w1j , z1j for the
≤ 5 clauses variable 1
appears in.

Spanning tree:
Connection from C1 to
1 either via x1 or via
w10, . . . ,w14.

edge x1 in the tree ⇔
x1 = TRUE



Introduction Knapsack Problem KCG on Trees Chordal Graph FPTAS MST

MSTCG with a 3-ladder
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Conflict Graph G :
(x1, x̄1)
(∆11, g11)
(z11, w11, f11)
(z1j , w1j , f1j), j = 2, 3, 4

(w10, f10)
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(z1j , w1j , f1j), j = 2, 3, 4
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Connect C1 to 1 in MST:
choose g11 → f11 ⇒
w11 forbidden
other w1j : either forbid-
den or chosen ⇒
z1j forbidden =⇒
only connection via x1
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MSTCG with a 3-ladder
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x1 x̄1
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y1 ȳ1

1
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z14

z13

z12

z11

w14

w13

w12

w11
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1 1 1

a1 ā1

Conflict Graph G :
(x1, x̄1)
(∆11, g11)
(z11, w11, f11)
(z1j , w1j , f1j), j = 2, 3, 4

(w10, f10)

Connect C1 to 1 in MST:
choose g11 → f11 ⇒
w11 forbidden
other w1j : either forbid-
den or chosen ⇒
z1j forbidden =⇒
only connection via x1

MST: exactly one edge
gij for every clause j
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MSTCG with a 3-ladder

Construction

It can be shown:
There is a truth assignment for a 3-Sat instance with k clauses
⇐⇒
there is a conflict-free spanning tree with weight ≤ k .
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MSTCG with a 3-ladder

Construction

It can be shown:
There is a truth assignment for a 3-Sat instance with k clauses
⇐⇒
there is a conflict-free spanning tree with weight ≤ k .

Conclusion

Conflicts makes optimization (and life in general) much more
difficult.

=⇒ try to avoid conflicts whenever possible!

Thank you for your attention!
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