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I In a distributed system, processes residing at different nodes
of the network communicate by passing messages.

I It is an important question, whether a given set of messages
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Observation
1-sink-1-source packet routing can be solved efficiently.

Proof.
Calculate a maximum s-t-flow over time with time horizon T .

Observation
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Reduction from 3-PARTITION.

{
s t

1

2

k

a1

2a

3ka

2B

2B

k



Single-Sink-Single-Source Packet and Message Routing

Observation
1-sink-1-source packet routing can be solved efficiently.

Proof.
Calculate a maximum s-t-flow over time with time horizon T .

Observation
1-sink-1-source message routing is NP-complete.

Proof.
Reduction from 3-PARTITION.

{
s t

1

2

k

a1

2a

3ka

2B

2B

k



Contents

The message- and packet routing problem

Message routing and job shop scheduling

Path-finding algorithm

Message- and packet routing on special graph classes

Periodic message routing



Contents

The message- and packet routing problem

Message routing and job shop scheduling

Path-finding algorithm

Message- and packet routing on special graph classes

Periodic message routing



Congestion and Dilation
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I the congestion
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I Jobs J1, . . . , Jn, machines M1, . . . ,Mm, each job consists of a
sequence of operations Ji = ((Mi1 , pi1), ..., (Mik , pik )) to be
performed in order.
Goal: Find feasible schedule with minimal makespan.

I Example:

JR = ((M2, 3), (M3, 3))

JB = ((M1, 1), (M2, 1), (M4, 1), (M5, 1)).
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Results on Job Shop Scheduling

I AJSS is NP-hard to approximate within a factor of 5
4

[Sevast’janov et al. 93]

I O(C + D log log lmax)-schedule exists [Feige, Scheideler 02]

I O(C + D)-schedule if all operation lengths are one [Leighton,
Maggs, Richa 94]

I First constant factor approximation for packet routing
[Srinivasan, Teo 01]

I Our algorithm finds paths for the message routing problem
with C and D small.

I It improves the result of Srinivasan and Teo for packet routing
by a factor of 2.
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Paths with C and D small

I For some fixed D ≤ T define

Pi := {si , ti -paths of length ≤ D

li
} ∀i ∈ I .

I We are interested in an optimal {0, 1}-solution of

minx≥0 C
∀i ∈ I :

∑
P∈Pi

xP ≥ 1

∀e ∈ E :
∑

i∈I

∑
P∈Pi :e∈P lixP ≤ C

Theorem
Our algorithm finds a {0, 1}-solution x̂ such that

Ĉ < C ∗ + D,

where C ∗ is the congestion of an optimal fractional solution.
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Ĉ < C ∗ + D,

where C ∗ is the congestion of an optimal fractional solution.



An optimal fractional solution

Observation
An optimal fractional solution x∗ of

minx≥0 C
∀i ∈ I :

∑
P∈Pi

xP ≥ 1

∀e ∈ E :
∑

i∈I

∑
P∈Pi :e∈P lixP ≤ C

can be found efficiently.

Proof.
The pricing problem is the constant-length-bounded shortest
path problem (→ modified Dijkstra).
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Rounding algorithm

Algorithm

F ← messages with fixed paths (initially empty).
Iteratively:

1. Compute a basic optimal solution x∗ of

minx≥0 C
∀i ∈ I :

∑
P∈Pi

xP ≥ 1

∀e ∈ E :
∑

i∈I

∑
P∈Pi :e∈P lixP ≤ C −

∑
i∈F :e∈Pi

li

2. Fix variables with x∗P = 1; (move corresponding i from I to F ;)

3. Remove variables with x∗P = 0;

4. Remove constraint e with∑
i∈I

∑
P∈Pi :e∈P

li < C ∗ −
∑

i∈F :e∈Pi

li + D.



The algorithm is well-defined

Theorem
If 0 < x∗P < 1 for all paths P, there exists a constraint e with∑

i∈I

∑
P∈Pi :e∈P

li < C ∗ −
∑

i∈F :e∈Pi

li + D.

Proof.
Since x∗ is b.f.s., there exist linearly independent tight constraints T1 and
T2 of type (1) and (2) with n = |supp(x∗)| = |T1|+ |T2|. If

∀e ∈ T2 :
∑
i∈I

∑
P∈Pi :e∈P

li (1− x∗P) ≥ D, then

nD ≤
∑

i∈T1
D

∑
P∈Pi

x∗P +
∑

e∈T2

∑
i∈I

∑
P∈Pi :e∈P li (1− x∗P)

≤
∑

i∈I

∑
P∈Pi

(Dx∗P +
∑

e∈T2:e∈P li (1− x∗P))
≤

∑
i∈I

∑
P∈Pi

(Dx∗P + D − Dx∗P) = Dn.

Contradiction to linear independency!



Corollary

Corollary

The algorithm determines paths with small congestion and dilation.
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Message Routing on a Directed Path

I

I Theorem (Leung, Tam, Wong, Young 96)

Message routing on a directed path is NP-complete (reduction
from 3-PARTITION).

I Theorem
Farthest-Destination-First is optimal if si <P sj =⇒ ti ≤P tj .
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Further results on special graph classes

Message routing problem:

I NP-hard to approximate with a factor < 7
6 on a tree even if

message lengths of 1 and 2, only.

I NP-hard on a grid even in the single-sink, single-source case.

Packet routing problem:

I FDF optimal on directed paths, in-trees and out-trees.

I FDF arbitrarily bad on trees.

I 2-approximation on trees.

I C + D − 1-approximation on directed trees.

I NP-hard to approximate with a factor < 10
9 on trees.

I NP-hard to approximate with a factor < 7
6 on planar graphs.

I NP-hard to approximate with a factor < 6
5 on general graphs.

I 2-approximation on a grid with pairwise different origins and
destinations.
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Color algorithm

I Send packets according to the color algorithm:
1. Order the paths by increasing periods;
2. Color a path P with period p with a color class

[cP ] ∈ {[0 mod p], [1 mod p], . . . , [(p − 1) mod p]}

such that [cP ] ∩ [cP′ ] = ∅ if P and P ′ overlap.
3. Color the edges ek of {e0, e1, . . . , en} with time-dependent

color
(k + t) mod pmax for t = 0, . . . ;

4. Send packet P along ek at time step t if ek + t ∈ [cP ];

I Theorem: Feasible schedule if all periods are powers of 2.

I Thus, for general periods feasible if utilities

u(e) :=
∑

i :e∈Pi

1

pi
≤ 1

2
∀e ∈ E .



Color algorithm

I Send packets according to the color algorithm:
1. Order the paths by increasing periods;
2. Color a path P with period p with a color class

[cP ] ∈ {[0 mod p], [1 mod p], . . . , [(p − 1) mod p]}

such that [cP ] ∩ [cP′ ] = ∅ if P and P ′ overlap.
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Further Research

Solve all the open questions!


	The message- and packet routing problem
	Message routing and job shop scheduling
	Path-finding algorithm
	Message- and packet routing on special graph classes
	Periodic message routing

