
Sending Messages on Communication Networks
on Time

Ronald Koch, Britta Peis, Martin Skutella, Andreas Wiese

TU Berlin

The Message Routing Problem

I In a distributed system, processes residing at different nodes
of the network communicate by passing messages.

I It is an important question, whether a given set of messages
{Mi}i∈I can be routed through the network on time.

The Message Routing Problem

I In a distributed system, processes residing at different nodes
of the network communicate by passing messages.

I It is an important question, whether a given set of messages
{Mi}i∈I can be routed through the network on time.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

I It takes one time unit to send a packet on each link.

I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.

I Each message must be completely received by a node before it
can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

00:00

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

00:01

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

00:02

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

00:03

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

00:04

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

00:05

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

00:06

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

00:07

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

00:08

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

00:09

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

00:10

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

00:11

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

00:12

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

00:13

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

00:04

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

The Model

I Message Mi = (si , ti , li) consists of li unit-size packets that
need to be send from si to ti within time horizon T .

00:12

I It takes one time unit to send a packet on each link.
I At most one packet may traverse a link per time unit.
I Each message must be completely received by a node before it

can be traversed to the next one.

Special Case: Packet Routing

I In the packet routing problem, each message consists of
only one packet.

I Integral multicommodity flow problem over time with
unit travel times and capacities.

Special Case: Packet Routing

I In the packet routing problem, each message consists of
only one packet.

I Integral multicommodity flow problem over time with
unit travel times and capacities.

Special Case: Packet Routing

I In the packet routing problem, each message consists of
only one packet.

00:00

I Integral multicommodity flow problem over time with
unit travel times and capacities.

Special Case: Packet Routing

I In the packet routing problem, each message consists of
only one packet.

00:01

I Integral multicommodity flow problem over time with
unit travel times and capacities.

Special Case: Packet Routing

I In the packet routing problem, each message consists of
only one packet.

00:02

I Integral multicommodity flow problem over time with
unit travel times and capacities.

Special Case: Packet Routing

I In the packet routing problem, each message consists of
only one packet.

00:03

I Integral multicommodity flow problem over time with
unit travel times and capacities.

Special Case: Packet Routing

I In the packet routing problem, each message consists of
only one packet.

00:04

I Integral multicommodity flow problem over time with
unit travel times and capacities.

Special Case: Packet Routing

I In the packet routing problem, each message consists of
only one packet.

00:05

I Integral multicommodity flow problem over time with
unit travel times and capacities.

Single-Sink-Single-Source Packet and Message Routing

Observation
1-sink-1-source packet routing can be solved efficiently.

Proof.
Calculate a maximum s-t-flow over time with time horizon T .

Observation
1-sink-1-source message routing is NP-complete.

Proof.
Reduction from 3-PARTITION.

{
s t

1

2

k

a1

2a

3ka

2B

2B

k

Single-Sink-Single-Source Packet and Message Routing

Observation
1-sink-1-source packet routing can be solved efficiently.

Proof.
Calculate a maximum s-t-flow over time with time horizon T .

Observation
1-sink-1-source message routing is NP-complete.

Proof.
Reduction from 3-PARTITION.

{
s t

1

2

k

a1

2a

3ka

2B

2B

k

Contents

The message- and packet routing problem

Message routing and job shop scheduling

Path-finding algorithm

Message- and packet routing on special graph classes

Periodic message routing

Contents

The message- and packet routing problem

Message routing and job shop scheduling

Path-finding algorithm

Message- and packet routing on special graph classes

Periodic message routing

Congestion and Dilation

I In case the paths {Pi}i∈I are known in advance,

we have to trivial lower bounds on T :

I the congestion

C := max
e∈E

∑
i :e∈Pi

li ,

I and the dilation
D := max

i∈I
|Pi |li .

I Assigning priorities → acyclic job shop scheduling problem!

Congestion and Dilation

I In case the paths {Pi}i∈I are known in advance,

we have to trivial lower bounds on T :
I the congestion

C := max
e∈E

∑
i :e∈Pi

li ,

I and the dilation
D := max

i∈I
|Pi |li .

I Assigning priorities → acyclic job shop scheduling problem!

Congestion and Dilation

I In case the paths {Pi}i∈I are known in advance,

we have to trivial lower bounds on T :
I the congestion

C := max
e∈E

∑
i :e∈Pi

li ,

I and the dilation
D := max

i∈I
|Pi |li .

I Assigning priorities → acyclic job shop scheduling problem!

Congestion and Dilation

I In case the paths {Pi}i∈I are known in advance,

we have to trivial lower bounds on T :
I the congestion

C := max
e∈E

∑
i :e∈Pi

li ,

I and the dilation
D := max

i∈I
|Pi |li .

I Assigning priorities → acyclic job shop scheduling problem!

Job Shop Scheduling

I Jobs J1, . . . , Jn, machines M1, . . . ,Mm, each job consists of a
sequence of operations Ji = ((Mi1 , pi1), ..., (Mik , pik)) to be
performed in order.
Goal: Find feasible schedule with minimal makespan.

I Example:

JR = ((M2, 3), (M3, 3))

JB = ((M1, 1), (M2, 1), (M4, 1), (M5, 1)).

1

2
4

3

5

Job Shop Scheduling

I Jobs J1, . . . , Jn, machines M1, . . . ,Mm, each job consists of a
sequence of operations Ji = ((Mi1 , pi1), ..., (Mik , pik)) to be
performed in order.
Goal: Find feasible schedule with minimal makespan.

I Example:

JR = ((M2, 3), (M3, 3))

JB = ((M1, 1), (M2, 1), (M4, 1), (M5, 1)).

1

2
4

3

5

Job Shop Scheduling

I Jobs J1, . . . , Jn, machines M1, . . . ,Mm, each job consists of a
sequence of operations Ji = ((Mi1 , pi1), ..., (Mik , pik)) to be
performed in order.
Goal: Find feasible schedule with minimal makespan.

I Example:

JR = ((M2, 3), (M3, 3))

JB = ((M1, 1), (M2, 1), (M4, 1), (M5, 1)).

1

2
4

3

5

M

M

M

M
M

1

2

3

4

5

Results on Job Shop Scheduling

I AJSS is NP-hard to approximate within a factor of 5
4

[Sevast’janov et al. 93]

I O(C + D log log lmax)-schedule exists [Feige, Scheideler 02]

I O(C + D)-schedule if all operation lengths are one [Leighton,
Maggs, Richa 94]

I First constant factor approximation for packet routing
[Srinivasan, Teo 01]

I Our algorithm finds paths for the message routing problem
with C and D small.

I It improves the result of Srinivasan and Teo for packet routing
by a factor of 2.

Results on Job Shop Scheduling

I AJSS is NP-hard to approximate within a factor of 5
4

[Sevast’janov et al. 93]

I O(C + D log log lmax)-schedule exists [Feige, Scheideler 02]

I O(C + D)-schedule if all operation lengths are one [Leighton,
Maggs, Richa 94]

I First constant factor approximation for packet routing
[Srinivasan, Teo 01]

I Our algorithm finds paths for the message routing problem
with C and D small.

I It improves the result of Srinivasan and Teo for packet routing
by a factor of 2.

Results on Job Shop Scheduling

I AJSS is NP-hard to approximate within a factor of 5
4

[Sevast’janov et al. 93]

I O(C + D log log lmax)-schedule exists [Feige, Scheideler 02]

I O(C + D)-schedule if all operation lengths are one [Leighton,
Maggs, Richa 94]

I First constant factor approximation for packet routing
[Srinivasan, Teo 01]

I Our algorithm finds paths for the message routing problem
with C and D small.

I It improves the result of Srinivasan and Teo for packet routing
by a factor of 2.

Results on Job Shop Scheduling

I AJSS is NP-hard to approximate within a factor of 5
4

[Sevast’janov et al. 93]

I O(C + D log log lmax)-schedule exists [Feige, Scheideler 02]

I O(C + D)-schedule if all operation lengths are one [Leighton,
Maggs, Richa 94]

I First constant factor approximation for packet routing
[Srinivasan, Teo 01]

I Our algorithm finds paths for the message routing problem
with C and D small.

I It improves the result of Srinivasan and Teo for packet routing
by a factor of 2.

Results on Job Shop Scheduling

I AJSS is NP-hard to approximate within a factor of 5
4

[Sevast’janov et al. 93]

I O(C + D log log lmax)-schedule exists [Feige, Scheideler 02]

I O(C + D)-schedule if all operation lengths are one [Leighton,
Maggs, Richa 94]

I First constant factor approximation for packet routing
[Srinivasan, Teo 01]

I Our algorithm finds paths for the message routing problem
with C and D small.

I It improves the result of Srinivasan and Teo for packet routing
by a factor of 2.

Results on Job Shop Scheduling

I AJSS is NP-hard to approximate within a factor of 5
4

[Sevast’janov et al. 93]

I O(C + D log log lmax)-schedule exists [Feige, Scheideler 02]

I O(C + D)-schedule if all operation lengths are one [Leighton,
Maggs, Richa 94]

I First constant factor approximation for packet routing
[Srinivasan, Teo 01]

I Our algorithm finds paths for the message routing problem
with C and D small.

I It improves the result of Srinivasan and Teo for packet routing
by a factor of 2.

Contents

The message- and packet routing problem

Message routing and job shop scheduling

Path-finding algorithm

Message- and packet routing on special graph classes

Periodic message routing

Paths with C and D small

I For some fixed D ≤ T define

Pi := {si , ti -paths of length ≤ D

li
} ∀i ∈ I .

I We are interested in an optimal {0, 1}-solution of

minx≥0 C
∀i ∈ I :

∑
P∈Pi

xP ≥ 1

∀e ∈ E :
∑

i∈I

∑
P∈Pi :e∈P lixP ≤ C

Theorem
Our algorithm finds a {0, 1}-solution x̂ such that

Ĉ < C ∗ + D,

where C ∗ is the congestion of an optimal fractional solution.

Paths with C and D small

I For some fixed D ≤ T define

Pi := {si , ti -paths of length ≤ D

li
} ∀i ∈ I .

I We are interested in an optimal {0, 1}-solution of

minx≥0 C
∀i ∈ I :

∑
P∈Pi

xP ≥ 1

∀e ∈ E :
∑

i∈I

∑
P∈Pi :e∈P lixP ≤ C

Theorem
Our algorithm finds a {0, 1}-solution x̂ such that

Ĉ < C ∗ + D,

where C ∗ is the congestion of an optimal fractional solution.

Paths with C and D small

I For some fixed D ≤ T define

Pi := {si , ti -paths of length ≤ D

li
} ∀i ∈ I .

I We are interested in an optimal {0, 1}-solution of

minx≥0 C
∀i ∈ I :

∑
P∈Pi

xP ≥ 1

∀e ∈ E :
∑

i∈I

∑
P∈Pi :e∈P lixP ≤ C

Theorem
Our algorithm finds a {0, 1}-solution x̂ such that

Ĉ < C ∗ + D,

where C ∗ is the congestion of an optimal fractional solution.

An optimal fractional solution

Observation
An optimal fractional solution x∗ of

minx≥0 C
∀i ∈ I :

∑
P∈Pi

xP ≥ 1

∀e ∈ E :
∑

i∈I

∑
P∈Pi :e∈P lixP ≤ C

can be found efficiently.

Proof.
The pricing problem is the constant-length-bounded shortest
path problem (→ modified Dijkstra).

An optimal fractional solution

Observation
An optimal fractional solution x∗ of

minx≥0 C
∀i ∈ I :

∑
P∈Pi

xP ≥ 1

∀e ∈ E :
∑

i∈I

∑
P∈Pi :e∈P lixP ≤ C

can be found efficiently.

Proof.
The pricing problem is the constant-length-bounded shortest
path problem (→ modified Dijkstra).

Rounding algorithm

Algorithm

F ← messages with fixed paths (initially empty).
Iteratively:

1. Compute a basic optimal solution x∗ of

minx≥0 C
∀i ∈ I :

∑
P∈Pi

xP ≥ 1

∀e ∈ E :
∑

i∈I

∑
P∈Pi :e∈P lixP ≤ C −

∑
i∈F :e∈Pi

li

2. Fix variables with x∗P = 1; (move corresponding i from I to F ;)

3. Remove variables with x∗P = 0;

4. Remove constraint e with∑
i∈I

∑
P∈Pi :e∈P

li < C ∗ −
∑

i∈F :e∈Pi

li + D.

The algorithm is well-defined

Theorem
If 0 < x∗P < 1 for all paths P, there exists a constraint e with∑

i∈I

∑
P∈Pi :e∈P

li < C ∗ −
∑

i∈F :e∈Pi

li + D.

Proof.
Since x∗ is b.f.s., there exist linearly independent tight constraints T1 and
T2 of type (1) and (2) with n = |supp(x∗)| = |T1|+ |T2|. If

∀e ∈ T2 :
∑
i∈I

∑
P∈Pi :e∈P

li (1− x∗P) ≥ D, then

nD ≤
∑

i∈T1
D

∑
P∈Pi

x∗P +
∑

e∈T2

∑
i∈I

∑
P∈Pi :e∈P li (1− x∗P)

≤
∑

i∈I

∑
P∈Pi

(Dx∗P +
∑

e∈T2:e∈P li (1− x∗P))
≤

∑
i∈I

∑
P∈Pi

(Dx∗P + D − Dx∗P) = Dn.

Contradiction to linear independency!

Corollary

Corollary

The algorithm determines paths with small congestion and dilation.

Contents

The message- and packet routing problem

Message routing and job shop scheduling

Path-finding algorithm

Message- and packet routing on special graph classes

Periodic message routing

Message Routing on a Directed Path

I

I Theorem (Leung, Tam, Wong, Young 96)

Message routing on a directed path is NP-complete (reduction
from 3-PARTITION).

I Theorem
Farthest-Destination-First is optimal if si <P sj =⇒ ti ≤P tj .

Message Routing on a Directed Path

I

I Theorem (Leung, Tam, Wong, Young 96)

Message routing on a directed path is NP-complete (reduction
from 3-PARTITION).

I Theorem
Farthest-Destination-First is optimal if si <P sj =⇒ ti ≤P tj .

Message Routing on a Directed Path

I

Optimal Schedule:

Farthest−Destination−First:

19

22

I Theorem (Leung, Tam, Wong, Young 96)

Message routing on a directed path is NP-complete (reduction
from 3-PARTITION).

I Theorem
Farthest-Destination-First is optimal if si <P sj =⇒ ti ≤P tj .

Message Routing on a Directed Path

I

Optimal Schedule:

Farthest−Destination−First:

19

22

I Theorem (Leung, Tam, Wong, Young 96)

Message routing on a directed path is NP-complete (reduction
from 3-PARTITION).

I Theorem
Farthest-Destination-First is optimal if si <P sj =⇒ ti ≤P tj .

Message Routing on a Directed Path

I

Optimal Schedule:

Farthest−Destination−First:

19

22

I Theorem (Leung, Tam, Wong, Young 96)

Message routing on a directed path is NP-complete (reduction
from 3-PARTITION).

I Theorem
Farthest-Destination-First is optimal if si <P sj =⇒ ti ≤P tj .

Further results on special graph classes

Message routing problem:

I NP-hard to approximate with a factor < 7
6 on a tree even if

message lengths of 1 and 2, only.

I NP-hard on a grid even in the single-sink, single-source case.

Packet routing problem:

I FDF optimal on directed paths, in-trees and out-trees.

I FDF arbitrarily bad on trees.

I 2-approximation on trees.

I C + D − 1-approximation on directed trees.

I NP-hard to approximate with a factor < 10
9 on trees.

I NP-hard to approximate with a factor < 7
6 on planar graphs.

I NP-hard to approximate with a factor < 6
5 on general graphs.

I 2-approximation on a grid with pairwise different origins and
destinations.

Contents

The message- and packet routing problem

Message routing and job shop scheduling

Path-finding algorithm

Message- and packet routing on special graph classes

Periodic message routing

Periodic message routing

I Each message (here: packet) is released periodically.

2

4

4 4 42

period

I Feasible schedule: each packet is sent before the next one is
released.

Periodic message routing

I Each message (here: packet) is released periodically.

2

4

2

4

44

2

4

4 4 42

I Feasible schedule: each packet is sent before the next one is
released.

Periodic message routing

I Each message (here: packet) is released periodically.

2

4

2

4

44

2

4

4 4 42

I Feasible schedule: each packet is sent before the next one is
released.

Periodic message routing

I Each message (here: packet) is released periodically.

2

4

4

2

4

2

4

4 2 4

4

4

I Feasible schedule: each packet is sent before the next one is
released.

Periodic message routing

I Each message (here: packet) is released periodically.

2

4

4

4

2

4

4 42

2

4

t=0
4

I Feasible schedule: each packet is sent before the next one is
released.

Periodic message routing

I Each message (here: packet) is released periodically.

2

4

4

4

4

42

2

2

4

4

4

t=1

I Feasible schedule: each packet is sent before the next one is
released.

Periodic message routing

I Each message (here: packet) is released periodically.

2

4

4

4

4

42

2

2

4

4

4

t=1

I Feasible schedule: each packet is sent before the next one is
released.

Periodic message routing

I Each message (here: packet) is released periodically.

2

4

4

4

2

244 42 4

2

2

4

t=2

I Feasible schedule: each packet is sent before the next one is
released.

Periodic message routing

I Each message (here: packet) is released periodically.

2

4

4

4

2

244 42 4

2

2

4

t=2

I Feasible schedule: each packet is sent before the next one is
released.

Periodic message routing

I Each message (here: packet) is released periodically.

2

4

4

4

2

4 42 4242 2

4

t=3

I Feasible schedule: each packet is sent before the next one is
released.

Periodic message routing

I Each message (here: packet) is released periodically.

2

4

4

4

2

4 42 4242 2

4

t=3

I Feasible schedule: each packet is sent before the next one is
released.

Periodic message routing

I Each message (here: packet) is released periodically.

2

4

4

4

2

44222424

4

2

4 2 4

4

4

t=4

I Feasible schedule: each packet is sent before the next one is
released.

Color algorithm

I Send packets according to the color algorithm:
1. Order the paths by increasing periods;
2. Color a path P with period p with a color class

[cP] ∈ {[0 mod p], [1 mod p], . . . , [(p − 1) mod p]}

such that [cP] ∩ [cP′] = ∅ if P and P ′ overlap.
3. Color the edges ek of {e0, e1, . . . , en} with time-dependent

color
(k + t) mod pmax for t = 0, . . . ;

4. Send packet P along ek at time step t if ek + t ∈ [cP];

I Theorem: Feasible schedule if all periods are powers of 2.

I Thus, for general periods feasible if utilities

u(e) :=
∑

i :e∈Pi

1

pi
≤ 1

2
∀e ∈ E .

Color algorithm

I Send packets according to the color algorithm:
1. Order the paths by increasing periods;
2. Color a path P with period p with a color class

[cP] ∈ {[0 mod p], [1 mod p], . . . , [(p − 1) mod p]}

such that [cP] ∩ [cP′] = ∅ if P and P ′ overlap.
3. Color the edges ek of {e0, e1, . . . , en} with time-dependent

color
(k + t) mod pmax for t = 0, . . . ;

4. Send packet P along ek at time step t if ek + t ∈ [cP];

I Theorem: Feasible schedule if all periods are powers of 2.

I Thus, for general periods feasible if utilities

u(e) :=
∑

i :e∈Pi

1

pi
≤ 1

2
∀e ∈ E .

Color algorithm

I Send packets according to the color algorithm:
1. Order the paths by increasing periods;
2. Color a path P with period p with a color class

[cP] ∈ {[0 mod p], [1 mod p], . . . , [(p − 1) mod p]}

such that [cP] ∩ [cP′] = ∅ if P and P ′ overlap.
3. Color the edges ek of {e0, e1, . . . , en} with time-dependent

color
(k + t) mod pmax for t = 0, . . . ;

4. Send packet P along ek at time step t if ek + t ∈ [cP];

I Theorem: Feasible schedule if all periods are powers of 2.

I Thus, for general periods feasible if utilities

u(e) :=
∑

i :e∈Pi

1

pi
≤ 1

2
∀e ∈ E .

Further Research

Solve all the open questions!

	The message- and packet routing problem
	Message routing and job shop scheduling
	Path-finding algorithm
	Message- and packet routing on special graph classes
	Periodic message routing

