A Fast Max-Cut Algorithm on Planar Graphs

Frauke Liers Gregor Pardella

Institut für Informatik Universität zu Köln

13th Combinatorial Optimization Workshop

Aussois

January 11-17, 2008

The Max-Cut Problem

A MAXIMUM CUT $\delta(Q)$ in a (weighted) graph G = (V, E) is a node set $Q \subseteq V$ with maximum weight $w(\delta(Q)) = \sum_{e \in \delta(Q)} w(e)$.

The Max-Cut Problem

Complexity Status

- NP-hard in general
- poly-time solvable graph classes exist, e.g. planar graphs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Max-Cut Problem

Complexity Status

- NP-hard in general
- poly-time solvable graph classes exist, e.g. planar graphs

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Applications

- theoretical physics (e.g. Ising spin glasses)
- VIA minimization
- network flow tasks
- quadratic 0-1 optimization

▶ ...

We focus on planar graphs.

nonnegative edge weights :

Hadlock (1975), Dorfman, Orlova (1972)

nonnegative edge weights :

- Hadlock (1975), Dorfman, Orlova (1972)
- arbitrarily weighted
 - Barahona (in the 1980s)
 - ▶ poly-time solvability for graphs not contractible to K₅

Mutzel (1990)

nonnegative edge weights :

- Hadlock (1975), Dorfman, Orlova (1972)
- arbitrarily weighted
 - Barahona (in the 1980s)
 - poly-time solvability for graphs not contractible to K₅

- Mutzel (1990)
- Shih, Wu, and Kuo (1990)
 - minimum Eulerian graph in dual
 - fastest known algorithm $O(n^{1.5} logn)$

nonnegative edge weights :

- Hadlock (1975), Dorfman, Orlova (1972)
- arbitrarily weighted
 - Barahona (in the 1980s)
 - poly-time solvability for graphs not contractible to K₅

- Mutzel (1990)
- Shih, Wu, and Kuo (1990)
 - minimum Eulerian graph in dual
 - fastest known algorithm $O(n^{1.5} logn)$
- Schraudolph, Kamenetsky (2008)

General Algorithmic Scheme

Input: embedding of a weighted planar graph *G* **Output:** MAX-CUT $\delta(Q)$ of *G*

- 1: Construct some expanded dual graph G_D
- 2: Calculate matching M in G_D
- 3: Use *M* to generate a MAX-CUT $\delta(Q)$ of *G*

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

4: return $\delta(Q)$

Outline

The New Algorithm

Outline

- The New Algorithm
- Application in Physics 2D planar Ising spin glass

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Outline

- The New Algorithm
- Application in Physics 2D planar Ising spin glass

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Results

Preliminaries

omit self-loops (will never be cut-edges)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- merge multiple edges to one edge
- Let G = (V, E) be
 - simple
 - connected
 - planar
 - real-weighted

Create Dual

▶ take dual edge weights from G

planar graph (assume $w(e) = 1 \ \forall e \in E$)

Create Dual

take dual edge weights from G

embedding of a simple planar graph (assume $w(e) = 1 \ \forall e \in E$)

Split Nodes

Split each node $v \in V_D$ with deg(v) > 4 into $\lfloor (deg(v) - 1)/2 \rfloor$ nodes, connect them by a simple path. New edges receive weight zero.

even degree node

odd degree node

3

ヘロト ヘヨト ヘヨト

Split Nodes

Split each node $v \in V_D$ with deg(v) > 4 into $\lfloor (deg(v) - 1)/2 \rfloor$ nodes, connect them by a simple path. New edges receive weight zero.

Result of a splitting operation

even degree node

odd degree node

< ロ > < 同 > < 回 > < 回 > .

The dual graph.

The dual graph.

The split dual graph.

The dual graph.

The split dual graph.

Each node now has degree three or four.

Expand Graph

Each node $v \in V_D$ is expanded to a K_4 subgraph (Kasteleyn city). New edges receive weight zero.

▲口>▲□>▲目>▲目> 目 ろんの

Match Edges

Determine minimum-weight perfect matching on the transformed dual graph. (MAX-CUT: negate weights)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Match Edges

Determine minimum-weight perfect matching on the transformed dual graph. (MAX-CUT: negate weights)

◆ロ▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Shrink Nodes

Shrink back all nodes (and edges) created in previous steps, and keep track of matched dual edges.

Shrink Nodes

Shrink back all nodes (and edges) created in previous steps, and keep track of matched dual edges.

Shrink Nodes

Shrink back all nodes (and edges) created in previous steps, and keep track of matched dual edges.

Cut Eulerian subgraphs in dual \Leftrightarrow cut *G*

・ロト・日本・日本・日本・日本・日本

Correctness

- ⇒ optimal matching
- ⇔ optimal Eulerian subgraphs
- ⇔ optimal cut

Correctness

- ⇒ optimal matching
- ⇔ optimal Eulerian subgraphs
- ⇔ optimal cut

Correctness

- ⇒ optimal matching
- ⇔ optimal Eulerian subgraphs
- ⇔ optimal cut

Correctness

- ⇒ optimal matching
- ⇔ optimal Eulerian subgraphs
- ⇔ optimal cut

transformation can be done in linear time \Rightarrow running time depends on the matching: $O(n^{1.5} logn)$ (with Planar Separator Theorem)

Shih, Wu, and Kuo vis-à-vis the New Algorithm

	Shih, Wu, and Kuo	new algorithm
	(sharp bounds)	(upper bounds)
V	14 <i>n</i> – 28	8 <i>n</i> – 16
E	21 <i>n</i> – 42	15 <i>n</i> – 30

expanded dual graph size

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

2D Planar Ising Spin Glasses

ground state energy

min
$$-\sum_{e\in E} w(e) + 2\sum_{e\in \delta(Q)} w(e)$$

with $Q \subseteq V$.

Traditional Approaches

- exact algorithm by Bieche et al. (1980)
- exact algorithm by Barahona (1982)

also solve the problem via matching

Traditional Approaches

- exact algorithm by Bieche et al. (1980)
- exact algorithm by Barahona (1982)

also solve the problem via matching

Popular heuristic variant of the approach by Bieche et al.

thin graph by deleting edges with weight > c_{max}

Traditional Approaches

- exact algorithm by Bieche et al. (1980)
- exact algorithm by Barahona (1982)

also solve the problem via matching

Popular heuristic variant of the approach by Bieche et al.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

- thin graph by deleting edges with weight > c_{max}
- often yields high-quality heuristic
 - Palmer, and Adler (1999) 1801² nodes
 - Hartmann, and Young (2001) 480² nodes

Results with New Algorithm

2D planar Ising spin glasses

	<u> </u>	
V _{grid}	average time	memory
100 ²	<1	159 MB
150 ²	2	159 MB
250 ²	<10	163 MB
500 ²	110	333 MB
1000 ²	1200	995 MB
1500 ²	5280	2.05 GB
2000 ²	(\sim 4h) 14524	3.57 GB
3000 ²	(\sim 17h) 61167	7.83 GB

- MIN-CUT calculations (using Blossom IV)
- uniform distributed $\pm J$ edge weights
- running times in seconds

Results with New Algorithm

TSPLIB - Delaunay triangulated point sets

instance name	V	<i>E</i>	time (sec)
pla85900	85900	257604	(~ 2.8h) 10248.70
pla33810	33810	101367	390.50
usa13509	13509	40503	169.73
brd14051	14051	42128	140.49
d18512	18512	55510	86.50
pla7397	7397	21865	15.11
rl11849	11849	35532	9.87
rl5934	5934	17770	4.56
fnl4461	4461	13359	3.21
rl5915	5915	17728	2.84

- MAX-CUT calculations (using Blossom IV)
- euclidean distances as edge weights

Results with New Algorithm

USA road networks - DIMACS

instance (V , E)	time (sec)
USA-road-d.FLA (1,070,376, 2,712,798)	394937 (\sim 4.5d)
USA-road-d.NW (1,207,945, 2,840,208)	168239 (\sim 2d)
USA-road-d.NY (264,346, 793,002)	117997 (\sim 1.3d)
USA-road-d.BAY (321,270, 800,172)	90486 (\sim 1d)
USA-road-d.COL (435,666, 1,057,066)	32227 (\sim 0.3d)

- MAX-CUT calculations (using Blossom IV)
- euclidean distances as edge weights

Thank you very much for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで