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The Max-Cut Problem

A MAXIMUM CUT δ(Q) in a (weighted) graph G = (V , E) is a
node set Q ⊆ V with maximum weight
w(δ(Q)) =

∑
e∈δ(Q) w(e).
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Applications

◮ theoretical physics (e.g. Ising spin glasses)
◮ VIA minimization
◮ network flow tasks
◮ quadratic 0-1 optimization
◮ . . .

We focus on planar graphs.
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◮ nonnegative edge weights :
◮ Hadlock (1975), Dorfman, Orlova (1972)

◮ arbitrarily weighted
◮ Barahona (in the 1980s)

◮ poly-time solvability for graphs not contractible to K5

◮ Mutzel (1990)
◮ Shih, Wu, and Kuo (1990)

◮ minimum Eulerian graph in dual
◮ fastest known algorithm - O(n1.5logn)

◮ Schraudolph, Kamenetsky (2008)



General Algorithmic Scheme

Input: embedding of a weighted planar graph G
Output: MAX-CUT δ(Q) of G

1: Construct some expanded dual graph GD

2: Calculate matching M in GD

3: Use M to generate a MAX-CUT δ(Q) of G
4: return δ(Q)
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Preliminaries

◮ omit self-loops (will never be cut-edges)
◮ merge multiple edges to one edge

Let G = (V , E) be
◮ simple
◮ connected
◮ planar
◮ real-weighted



The New Algorithm

Create Dual

◮ take dual edge weights from G

A

B

C

D

embedding of a simple
planar graph

(assume w(e) = 1 ∀e ∈ E )



The New Algorithm

Create Dual

◮ take dual edge weights from G

A

B

C

D

embedding of a simple
planar graph

(assume w(e) = 1 ∀e ∈ E )

A

B

C

D

. . . and its dual graph.



The New Algorithm

Split Nodes
Split each node v ∈ VD with deg(v) > 4 into ⌊(deg(v) − 1)/2⌋
nodes, connect them by a simple path. New edges receive
weight zero.

even degree node odd degree node



The New Algorithm

Split Nodes
Split each node v ∈ VD with deg(v) > 4 into ⌊(deg(v) − 1)/2⌋
nodes, connect them by a simple path. New edges receive
weight zero.

Result of a splitting operation

0 0 0 0

even degree node odd degree node
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The dual graph. The split dual graph.

Each node now has degree three or four.



The New Algorithm

Expand Graph
Each node v ∈ VD is expanded to a K4 subgraph
(Kasteleyn city). New edges receive weight zero.
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The New Algorithm

Cut
Eulerian subgraphs in dual ⇔ cut G
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Correctness and Running Time

transformation can be done in linear time

⇒ running time depends on the matching:
O(n1.5logn) (with Planar Separator Theorem)

Shih, Wu, and Kuo vis-à-vis the New Algorithm

Shih, Wu, and Kuo new algorithm
(sharp bounds) (upper bounds)

|V | 14n − 28 8n − 16
|E | 21n − 42 15n − 30

expanded dual graph size



2D Planar Ising Spin Glasses

w(e) > 0

w(e) < 0

ground state energy

min −
∑

e∈E

w(e) + 2
∑

e∈δ(Q)

w(e)

with Q ⊆ V .
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Traditional Approaches

◮ exact algorithm by Bieche et al. (1980)
◮ exact algorithm by Barahona (1982)

also solve the problem via matching

Popular heuristic variant of the approach by Bieche et al.

◮ thin graph by deleting edges with weight > cmax

◮ often yields high-quality heuristic
◮ Palmer, and Adler (1999) 18012 nodes
◮ Hartmann, and Young (2001) 4802 nodes



Results with New Algorithm

2D planar Ising spin glasses
|Vgrid | average time memory
1002 <1 159 MB
1502 2 159 MB
2502 <10 163 MB
5002 110 333 MB

10002 1200 995 MB
15002 5280 2.05 GB
20002 (∼ 4h) 14524 3.57 GB
30002 (∼ 17h) 61167 7.83 GB

◮ MIN-CUT calculations (using Blossom IV)
◮ uniform distributed ±J edge weights
◮ running times in seconds



Results with New Algorithm

TSPLIB - Delaunay triangulated point sets
instance name |V | |E | time (sec)
pla85900 85900 257604 (∼ 2.8h) 10248.70
pla33810 33810 101367 390.50
usa13509 13509 40503 169.73
brd14051 14051 42128 140.49
d18512 18512 55510 86.50
pla7397 7397 21865 15.11
rl11849 11849 35532 9.87
rl5934 5934 17770 4.56
fnl4461 4461 13359 3.21
rl5915 5915 17728 2.84

◮ MAX-CUT calculations (using Blossom IV)
◮ euclidean distances as edge weights



Results with New Algorithm

USA road networks - DIMACS
instance (|V |, |E |) time (sec)
USA-road-d.FLA (1,070,376, 2,712,798) 394937 (∼ 4.5d)
USA-road-d.NW (1,207,945, 2,840,208) 168239 (∼ 2d)
USA-road-d.NY (264,346, 793,002) 117997 (∼ 1.3d)
USA-road-d.BAY (321,270, 800,172) 90486 (∼ 1d)
USA-road-d.COL (435,666, 1,057,066) 32227 (∼ 0.3d)

◮ MAX-CUT calculations (using Blossom IV)
◮ euclidean distances as edge weights



Thank you very much for your attention!


