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Linear Arrangement Problem

Definition

Given an undirected graph G(V,E)

Goal: Find a labeling π : V → {1, . . . , n} that minimizes∑
(i,j)∈E

|π(i)− π(j)|.

Example
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We call the minimum lap(G). Here lap(G) = 10.
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Linear Arrangement Problem

Combinatorial Lower Bounds I

Degree Lower Bound, Petit (2003)

LBD =
1
2

∑
i∈V
b(deg(i) + 1)2/4c

1 3
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5

4

LBD = 1
2(4 + 4 + 2 + 2 + 2) = 7
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Linear Arrangement Problem

Combinatorial Lower Bounds II

Edge Lower Bound, Petit (2003)

At most (n− 1) edges with distance 1, (n− 2) with distance 2, etc.
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LBE = 4× 1 + 2× 2 = 8
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Linear Arrangement Problem

Eigenvalue Lower Bound

Eigenvalue Lower Bound, Juvan, Mohar (1992)

The n× n Laplacian matrix L(G) of G is defined as:

L(G)i,j :=


deg(i) i = j
−1 (i, j) ∈ E
0 otherwise.

LBJM = d(λ2(n2 − 1)/6e

L(G) =


3 −1 −1 −1 0
−1 2 0 0 −1
−1 0 2 0 −1
−1 0 0 2 −1

0 −1 −1 −1 3


λ2 = 2 ⇒ LBJM = d(2(52 − 1)/6e = 8
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Linear Arrangement Problem

Comparison of the Bounds

Name n m UB LBJM LBE LBD

gd95c 62 144 506 37 250 292
gd96b 111 193 1416 42 276 702
gd96c 65 125 519 37 186 191
gd96d 180 228 2391 418 277 595
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Linear Arrangement Problem

Linear Programming Bound

Amaral, Caprara, Letchford, Salazar (2007)

Introduce distance variables dij and solve:

min
∑

(i,j)∈E

dij

s.t.
∑

(i,j)∈E(G′)

dij ≥ lap(G′), G′ subgraph of G

dij ≥ 1, (i, j) ∈ E,

where lap(G′) is known, for example for G′ stars, cliques, etc.

Note: Separation can be done in the complete graph after
computing shortest paths on the dij-values.
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Linear Arrangement Problem

Betweenness Approach
Indicators

For each triple i, k, j, (i, j) ∈ E, k ∈ V \ {i, j} and each order π
χπikj indicates whether k lies between i and j in π:

χπikj :=


1 π−1(i) < π−1(k) < π−1(j) or

π−1(i) > π−1(k) > π−1(j)
0 otherwise.

Example
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Here: χπ132 = 0 and χπ235 = 1

Marcus Oswald Heidelberg A Betweenness Approach for Solving the LAP



Linear Arrangement Problem

Betweenness Approach
Indicators

For each triple i, k, j, (i, j) ∈ E, k ∈ V \ {i, j} and each order π
χπikj indicates whether k lies between i and j in π:

χπikj :=


1 π−1(i) < π−1(k) < π−1(j) or

π−1(i) > π−1(k) > π−1(j)
0 otherwise.

Example

1 3

2

5

4

1

2

5

3

4

Here: χπ132 = 0 and χπ235 = 1

Marcus Oswald Heidelberg A Betweenness Approach for Solving the LAP



Linear Arrangement Problem

Reformulation of the Problem

Computing the distances

|π−1(i)− π−1(j)| = 1 +
∑
k

χπikj

Linear Arrangement Problem

min
π∈S(n)

∑
(i,j)∈E

(1 +
∑
k

χπikj) = m+ min
π∈S(n)

∑
(i,j)∈E

∑
k∈V

χπikj .
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Linear Arrangement Problem

Branch-and-Cut based on Consecutive Ones

Problem

Given a 0/1 vector x. Is there a labeling π with x = χπ?

Writing x as matrix

We define a matrix M(x) ∈ {0, 1}2m×n like follows:

M(x)r,k :=


1 k = i and r = r(i, j) or

k = j and r = r(i, j) +m
0 k = j and r = r(i, j) or

k = i and r = r(i, j) +m
xikj otherwise,

where r(i, j) denotes the edge with endnodes i and j.

Observation

x is a feasible betweenness vector if and only if M(x) has the
consecutive ones property for rows.
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Linear Arrangement Problem

Transformation into a Consecutive Ones Problem

Characterization of Tucker (1972)

A 0/1 matrix M has the consecutive ones property for rows iff
none of five types of forbidden matrices occur in M as submatrix.

Integer Programming Formulation

There is a set of valid inequalities that can be separated in
polynomial time and cut off all forbidden matrices.

By solving the Weighted Consecutive Ones Problem with weights

wr,k :=


n k = i and r = r(i, j) or

k = j and r = r(i, j)
−1 otherwise,

we can solve the Linear Arrangement Problem.
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Linear Arrangement Problem

Branch-and-Cut based on Betweenness-Variables

Betweenness Polytope

PGBTW = conv{χπ | π ∈ S(n)}

Linear Arrangement Problem

m+ min
x∈PG

BTW

∑
k∈V

∑
(i,j)∈E

xikj

Observations

Like in the dij-formulation: Let G′ ⊂ G. Each valid inequality
for PG

′
BTW is valid for PGBTW .

For special graphs (stars, cliques, cycles, ...) we know
inequalities derived from the dij-formulation.
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Linear Arrangement Problem

Splitting distances

Computing the distances

|π−1(i)− π−1(j)| = 1 +
∑
k

χπikj

In terms of variables

dij = 1 +
∑
k

xikj

3-Star

d12 + d13 + d14 ≥ 4

↓

x132 + x142 + x123 + x143 + x124 + x134 ≥ 1

Marcus Oswald Heidelberg A Betweenness Approach for Solving the LAP



Linear Arrangement Problem

Splitting distances

Computing the distances

|π−1(i)− π−1(j)| = 1 +
∑
k

χπikj

In terms of variables

dij = 1 +
∑
k

xikj

3-Star

d12 + d13 + d14 ≥ 4

↓

x132 + x142 + x123 + x143 + x124 + x134 ≥ 1

Marcus Oswald Heidelberg A Betweenness Approach for Solving the LAP



Linear Arrangement Problem

Splitting distances

Computing the distances

|π−1(i)− π−1(j)| = 1 +
∑
k

χπikj

In terms of variables

dij = 1 +
∑
k

xikj

3-Star

d12 + d13 + d14 ≥ 4

↓

x132 + x142 + x123 + x143 + x124 + x134 ≥ 1

Marcus Oswald Heidelberg A Betweenness Approach for Solving the LAP



Linear Arrangement Problem

More Valid Inequalities

Observation

Not every valid inequality for PGBTW can be derived from the
dij-formulation.

Triangle Equation

For ij, ik and jk ∈ E the triangle equation holds:

xijk + xikj + xjik = 1

Note

The triangle equations could be easily separated but they only exist
if the corresponding triangle is part of G.
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Linear Arrangement Problem

Relation to the Cut-Polytope I

Observation

The vector χπikj for fixed k is incidence vector of a cut in G \ {k}:

1 3 54

2

Consequence

The projection of PGBTW onto the variables xikj for a fixed node k
is isomorphic to the cut polytope PG

′
CUT with G′ = G \ {k}.
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Linear Arrangement Problem

Relation to the Cut-Polytope II

Jünger, Reinelt, Rinaldi (1998)

Consider an LP-solution over the semimetric polytope of a
connected graph G(V,E). For each missing edge e = uv /∈ E
lower and upper bounds of the (artificial) LP value x̄e are given by

ξl = max {x̄(F )−x̄(P\F )−|F |+1 | P (u, v)-path, F ⊆ P, |F | odd}

ξu = min {−x̄(F )+x̄(P\F )+|F | | P (u, v)-path, F ⊆ P, |F | even}

Consequence

All separation procedures for the betweenness polytope can be
extended to the complete graph by shortest path computations.
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Linear Arrangement Problem

Complete Description of PG
BTW for G = K4

Triangle equations and odd-cycle inequalities are sufficient to
describe the betweenness polytope of K4.

3-Star Inequality

xikj + xilj + xijk + xilk + xijl + xikl ≥ 1

can be written as the sum of the triangle equation

xjlk + xkjl + xjkl = 1

and 3 odd-cycle inequalities

xilk + xilj − xjlk ≥ 0

xijk + xijl − xkjl ≥ 0

xikl + xikj − xjkl ≥ 0
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Linear Arrangement Problem

Branch-and-Cut

Feasibility Test

Instead of an IP-formulation we use the PQ-Tree-Algorithm
(Booth, Lueker, 1976) as feasibility test. If an integer solution is
not feasible we derive a weak but violated inequality.

Separation Procedures

Separate odd-cycle inequalities for all G \ {i}
Compute upper bounds for all x̄ikj as described before.

Enumerate all triangle inequalities

Enumerate all 5-star inequalities

Separate bigger stars heuristically
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Linear Arrangement Problem

Comparison of Root Bounds

Name n m UB LBLP,dij
LBWCOP LBBTW

gd95c 62 144 506 442 489 506∗

gd96b 111 193 1416 1275 899 1396
gd96c 65 125 519 405 381 519∗

gd96d 180 228 2391 2021 1077 2357
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Linear Arrangement Problem

Outlook

Betweenness approach provides very promising bounds

Deeper investigations of PGBTW → separation routines

Using general cut generation like target-cuts or mod-k-cuts

Using the knowledge on separating procedures for max-cut
(for example shrinking)

Better branching rules

Behaviour of our code on planar graphs
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