A Betweenness Approach for Solving the Linear Arrangement Problem

Marcus Oswald University of Heidelberg, Germany

Joint work with Alberto Caprara, Emiliano Traversi, Michael Jung and Gerhard Reinelt

Aussois, January 16th, 2009

Outline

- 1 Linear Arrangement Problem
- 2 Lower Bounds
- 3 Betweenness Approach
- 4 Branch-and-Cut Algorithms
- 5 Computational Results

Definition

• Given an undirected graph G(V, E)

æ

< ∃ > < ∃ >

Definition

- Given an undirected graph G(V, E)
- \bullet Goal: Find a labeling $\pi: V \to \{1, \dots, n\}$ that minimizes

$$\sum_{(i,j)\in E} |\pi(i) - \pi(j)|.$$

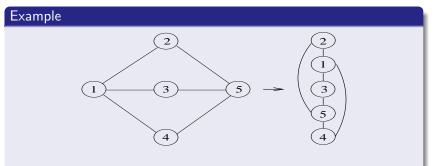
▶ < 문 > < 문 >

3

Definition

- $\bullet\,$ Given an undirected graph G(V,E)
- \bullet Goal: Find a labeling $\pi: V \to \{1, \dots, n\}$ that minimizes

$$\sum_{(i,j)\in E} |\pi(i) - \pi(j)|.$$

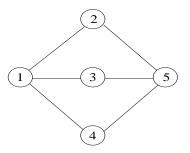


We call the minimum lap(G). Here lap(G) = 10.

Combinatorial Lower Bounds I

Degree Lower Bound, Petit (2003)

$$\mathsf{LB}_{\mathsf{D}} = \frac{1}{2} \sum_{i \in V} \lfloor (\deg(i) + 1)^2 / 4 \rfloor$$



$$\mathsf{LB}_{\mathsf{D}} = \frac{1}{2}(4 + 4 + 2 + 2 + 2) = 7$$

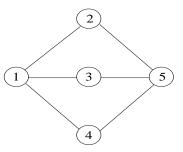
A B > A B >

э

Combinatorial Lower Bounds II

Edge Lower Bound, Petit (2003)

At most (n-1) edges with distance 1, (n-2) with distance 2, etc.



$$\mathsf{LB}_\mathsf{E} = 4 \times 1 + 2 \times 2 = 8$$

A B > A B >

Eigenvalue Lower Bound

Eigenvalue Lower Bound, Juvan, Mohar (1992)

The $n\times n$ Laplacian matrix L(G) of G is defined as:

$$L(G)_{i,j} := \begin{cases} \deg(i) & i = j \\ -1 & (i,j) \in E \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathsf{LB}_{\mathsf{JM}} = \lceil (\lambda_2(n^2 - 1)/6 \rceil$$

$$L(G) = \begin{pmatrix} 3 & -1 & -1 & -1 & 0\\ -1 & 2 & 0 & 0 & -1\\ -1 & 0 & 2 & 0 & -1\\ -1 & 0 & 0 & 2 & -1\\ 0 & -1 & -1 & -1 & 3 \end{pmatrix}$$

$$\lambda_2 = 2 \quad \Rightarrow \quad \mathsf{LB}_{\mathsf{JM}} = \lceil (2(5^2 - 1)/6 \rceil = 8) \rceil$$

Comparison of the Bounds

Name	n	m	UB	LB _{JM}	LBE	LB_D
gd95c	62	144	506	37	250	292
gd96b	111	193	1416	42	276	702
gd96c	65	125	519	37	186	191
gd96d	180	228	2391	418	277	595

∃ → < ∃ →</p>

э

Linear Programming Bound

Amaral, Caprara, Letchford, Salazar (2007)

Introduce distance variables d_{ij} and solve:

$$\min\sum_{(i,j)\in E} d_{ij}$$

$$s.t.\sum_{(i,j)\in E(G')}d_{ij}\geq lap(G'),\quad G' \text{ subgraph of } G$$

 $d_{ij} \ge 1, \quad (i,j) \in E,$

where lap(G') is known, for example for G' stars, cliques, etc.

Note: Separation can be done in the complete graph after computing shortest paths on the d_{ij} -values.

Betweenness Approach

Indicators

For each triple i, k, j, $(i, j) \in E, k \in V \setminus \{i, j\}$ and each order $\pi \chi_{ikj}^{\pi}$ indicates whether k lies between i and j in π :

$$\chi_{ikj}^{\pi} := \begin{cases} 1 & \pi^{-1}(i) < \pi^{-1}(k) < \pi^{-1}(j) & \text{or} \\ & \pi^{-1}(i) > \pi^{-1}(k) > \pi^{-1}(j) \\ 0 & \text{otherwise.} \end{cases}$$

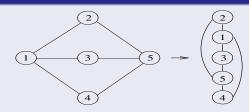
Betweenness Approach

Indicators

For each triple i, k, j, $(i, j) \in E, k \in V \setminus \{i, j\}$ and each order $\pi \chi_{ikj}^{\pi}$ indicates whether k lies between i and j in π :

$$\chi_{ikj}^{\pi} := \begin{cases} 1 & \pi^{-1}(i) < \pi^{-1}(k) < \pi^{-1}(j) & \text{or} \\ & \pi^{-1}(i) > \pi^{-1}(k) > \pi^{-1}(j) \\ 0 & \text{otherwise.} \end{cases}$$

Example



Here: $\chi^{\pi}_{132} = 0$ and $\chi^{\pi}_{235} = 1$

Reformulation of the Problem

Computing the distances

$$|\pi^{-1}(i) - \pi^{-1}(j)| = 1 + \sum_{k} \chi_{ikj}^{\pi}$$

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Reformulation of the Problem

Computing the distances

$$|\pi^{-1}(i) - \pi^{-1}(j)| = 1 + \sum_{k} \chi_{ikj}^{\pi}$$

Linear Arrangement Problem

$$\min_{\pi \in S(n)} \sum_{(i,j) \in E} (1 + \sum_{k} \chi_{ikj}^{\pi}) = m + \min_{\pi \in S(n)} \sum_{(i,j) \in E} \sum_{k \in V} \chi_{ikj}^{\pi}.$$

A B > A B >

Branch-and-Cut based on Consecutive Ones

Problem

Given a 0/1 vector x. Is there a labeling π with $x = \chi^{\pi}$?

伺 と く ヨ と く ヨ と

3

Branch-and-Cut based on Consecutive Ones

Problem

Given a 0/1 vector x. Is there a labeling π with $x = \chi^{\pi}$?

Writing x as matrix

We define a matrix $M(x) \in \{0,1\}^{2m \times n}$ like follows:

$$M(x)_{r,k} := \begin{cases} 1 & k = i \text{ and } r = r(i,j) \text{ or} \\ k = j \text{ and } r = r(i,j) + m \\ 0 & k = j \text{ and } r = r(i,j) \text{ or} \\ k = i \text{ and } r = r(i,j) + m \\ x_{ikj} & \text{otherwise,} \end{cases}$$

where r(i, j) denotes the edge with endnodes i and j.

Branch-and-Cut based on Consecutive Ones

Problem

Given a 0/1 vector x. Is there a labeling π with $x = \chi^{\pi}$?

Writing x as matrix

We define a matrix $M(x) \in \{0,1\}^{2m \times n}$ like follows:

$$M(x)_{r,k} := \begin{cases} 1 & k = i \text{ and } r = r(i,j) \text{ or } \\ k = j \text{ and } r = r(i,j) + m \\ 0 & k = j \text{ and } r = r(i,j) \text{ or } \\ k = i \text{ and } r = r(i,j) + m \\ x_{ikj} & \text{otherwise,} \end{cases}$$

where r(i, j) denotes the edge with endnodes i and j.

Observation

x is a feasible betweenness vector if and only if ${\cal M}(x)$ has the consecutive ones property for rows.

Transformation into a Consecutive Ones Problem

Characterization of Tucker (1972)

A 0/1 matrix M has the consecutive ones property for rows iff none of five types of forbidden matrices occur in M as submatrix.

Transformation into a Consecutive Ones Problem

Characterization of Tucker (1972)

A 0/1 matrix M has the consecutive ones property for rows iff none of five types of forbidden matrices occur in M as submatrix.

Integer Programming Formulation

There is a set of valid inequalities that can be separated in polynomial time and cut off all forbidden matrices.

Transformation into a Consecutive Ones Problem

Characterization of Tucker (1972)

A 0/1 matrix M has the consecutive ones property for rows iff none of five types of forbidden matrices occur in M as submatrix.

Integer Programming Formulation

There is a set of valid inequalities that can be separated in polynomial time and cut off all forbidden matrices.

By solving the Weighted Consecutive Ones Problem with weights

$$w_{r,k} := \begin{cases} n & k = i \text{ and } r = r(i,j) \text{ or } \\ k = j \text{ and } r = r(i,j) \\ -1 & \text{otherwise,} \end{cases}$$

we can solve the Linear Arrangement Problem.

Branch-and-Cut based on Betweenness-Variables

Betweenness Polytope

$$P^G_{BTW} = \operatorname{conv}\{\chi^{\pi} \mid \pi \in S(n)\}$$

A B + A B +

э

Branch-and-Cut based on Betweenness-Variables

Betweenness Polytope

$$P^G_{BTW} = \operatorname{conv}\{\chi^\pi \mid \pi \in S(n)\}$$

Linear Arrangement Problem

$$m + \min_{x \in P_{BTW}^G} \sum_{k \in V} \sum_{(i,j) \in E} x_{ikj}$$

• • = • • = •

э

Branch-and-Cut based on Betweenness-Variables

Betweenness Polytope

$$P^G_{BTW} = \operatorname{conv}\{\chi^{\pi} \mid \pi \in S(n)\}\$$

Linear Arrangement Problem

$$m + \min_{x \in P_{BTW}^G} \sum_{k \in V} \sum_{(i,j) \in E} x_{ikj}$$

Observations

- Like in the d_{ij} -formulation: Let $G' \subset G$. Each valid inequality for $P_{BTW}^{G'}$ is valid for P_{BTW}^{G} .
- For special graphs (stars, cliques, cycles, ...) we know inequalities derived from the d_{ij} -formulation.

伺 ト く ヨ ト く ヨ ト

Splitting distances

Computing the distances

$$|\pi^{-1}(i) - \pi^{-1}(j)| = 1 + \sum_{k} \chi^{\pi}_{ikj}$$

∃ → < ∃ →</p>

э

Splitting distances

Computing the distances

$$|\pi^{-1}(i) - \pi^{-1}(j)| = 1 + \sum_{k} \chi^{\pi}_{ikj}$$

In terms of variables

$$d_{ij} = 1 + \sum_{k} x_{ikj}$$

• • = • • = •

э

Splitting distances

Computing the distances

$$|\pi^{-1}(i) - \pi^{-1}(j)| = 1 + \sum_{k} \chi^{\pi}_{ikj}$$

In terms of variables

$$d_{ij} = 1 + \sum_{k} x_{ikj}$$

3-Star

$$d_{12} + d_{13} + d_{14} \ge 4$$

$$x_{132} + x_{142} + x_{123} + x_{143} + x_{124} + x_{134} \ge 1$$

<ロ> <同> <同> < 同> < 同>

æ

More Valid Inequalities

Observation

Not every valid inequality for P^G_{BTW} can be derived from the $d_{ij}\mbox{-}{\rm formulation}.$

∃ → < ∃ →</p>

More Valid Inequalities

Observation

Not every valid inequality for P^G_{BTW} can be derived from the $d_{ij}\mbox{-}{\rm formulation}.$

Triangle Equation

For ij, ik and $jk \in E$ the triangle equation holds:

 $x_{ijk} + x_{ikj} + x_{jik} = 1$

• • = • • = •

More Valid Inequalities

Observation

Not every valid inequality for P^G_{BTW} can be derived from the $d_{ij}\mbox{-}{\rm formulation}.$

Triangle Equation

For ij, ik and $jk \in E$ the triangle equation holds:

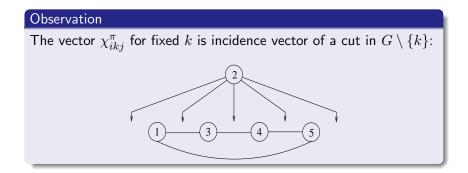
$$x_{ijk} + x_{ikj} + x_{jik} = 1$$

Note

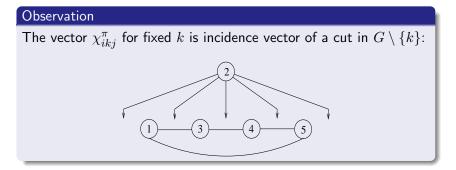
The triangle equations could be easily separated but they only exist if the corresponding triangle is part of G.

/□ ▶ < 글 ▶ < 글

Relation to the Cut-Polytope I



Relation to the Cut-Polytope I



Consequence

The projection of P_{BTW}^G onto the variables x_{ikj} for a fixed node k is isomorphic to the cut polytope $P_{CUT}^{G'}$ with $G' = G \setminus \{k\}$.

╗▶ ◀ ᆿ▶ ◀ ᆿ

Relation to the Cut-Polytope II

Jünger, Reinelt, Rinaldi (1998)

Consider an LP-solution over the semimetric polytope of a connected graph G(V, E). For each missing edge $e = uv \notin E$ lower and upper bounds of the (artificial) LP value \bar{x}_e are given by

$$\xi_{l} = \max\left\{\bar{x}(F) - \bar{x}(P \setminus F) - |F| + 1 \mid P(u, v) \text{-path}, F \subseteq P, |F| \text{ odd}\right\}$$

 $\xi_{u} = \min \left\{ -\bar{x}(F) + \bar{x}(P \setminus F) + |F| \mid P(u, v) \text{-path}, F \subseteq P, |F| \text{ even} \right\}$

- (E) (E)

Relation to the Cut-Polytope II

Jünger, Reinelt, Rinaldi (1998)

Consider an LP-solution over the semimetric polytope of a connected graph G(V, E). For each missing edge $e = uv \notin E$ lower and upper bounds of the (artificial) LP value \bar{x}_e are given by

$$\xi_{l} = \max\left\{\bar{x}(F) - \bar{x}(P \setminus F) - |F| + 1 \mid P(u, v) \text{-path}, F \subseteq P, |F| \text{ odd}\right\}$$

$$\xi_{u} = \min \left\{ -\bar{x}(F) + \bar{x}(P \setminus F) + |F| \mid P(u, v) \text{-path}, F \subseteq P, |F| \text{ even} \right\}$$

Consequence

All separation procedures for the betweenness polytope can be extended to the complete graph by shortest path computations.

Complete Description of P_{BTW}^G for $G = K_4$

э

伺 ト イヨト イヨト

Complete Description of P^G_{BTW} for $\overline{G} = \overline{K_4}$

Triangle equations and odd-cycle inequalities are sufficient to describe the betweenness polytope of K_4 .

Complete Description of P_{BTW}^G for $G = K_4$

Triangle equations and odd-cycle inequalities are sufficient to describe the betweenness polytope of K_4 .

3-Star Inequality

$$x_{ikj} + x_{ilj} + x_{ijk} + x_{ilk} + x_{ijl} + x_{ikl} \ge 1$$

can be written as the sum of the triangle equation

$$x_{jlk} + x_{kjl} + x_{jkl} = 1$$

and 3 odd-cycle inequalities

$$x_{ilk} + x_{ilj} - x_{jlk} \ge 0$$
$$x_{ijk} + x_{ijl} - x_{kjl} \ge 0$$
$$x_{ikl} + x_{ikj} - x_{jkl} \ge 0$$

Feasibility Test

Instead of an IP-formulation we use the PQ-Tree-Algorithm (Booth, Lueker, 1976) as feasibility test. If an integer solution is not feasible we derive a weak but violated inequality.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Feasibility Test

Instead of an IP-formulation we use the PQ-Tree-Algorithm (Booth, Lueker, 1976) as feasibility test. If an integer solution is not feasible we derive a weak but violated inequality.

Separation Procedures

• Separate odd-cycle inequalities for all $G \setminus \{i\}$

- (E) (E

Feasibility Test

Instead of an IP-formulation we use the PQ-Tree-Algorithm (Booth, Lueker, 1976) as feasibility test. If an integer solution is not feasible we derive a weak but violated inequality.

Separation Procedures

- Separate odd-cycle inequalities for all $G \setminus \{i\}$
- Compute upper bounds for all \bar{x}_{ikj} as described before.

.

Feasibility Test

Instead of an IP-formulation we use the PQ-Tree-Algorithm (Booth, Lueker, 1976) as feasibility test. If an integer solution is not feasible we derive a weak but violated inequality.

Separation Procedures

- Separate odd-cycle inequalities for all $G \setminus \{i\}$
- Compute upper bounds for all \bar{x}_{ikj} as described before.
- Enumerate all triangle inequalities

• • = • • = •

Feasibility Test

Instead of an IP-formulation we use the PQ-Tree-Algorithm (Booth, Lueker, 1976) as feasibility test. If an integer solution is not feasible we derive a weak but violated inequality.

Separation Procedures

- Separate odd-cycle inequalities for all $G \setminus \{i\}$
- Compute upper bounds for all \bar{x}_{ikj} as described before.
- Enumerate all triangle inequalities
- Enumerate all 5-star inequalities

• • = • • = •

Feasibility Test

Instead of an IP-formulation we use the PQ-Tree-Algorithm (Booth, Lueker, 1976) as feasibility test. If an integer solution is not feasible we derive a weak but violated inequality.

Separation Procedures

- Separate odd-cycle inequalities for all $G \setminus \{i\}$
- Compute upper bounds for all \bar{x}_{ikj} as described before.
- Enumerate all triangle inequalities
- Enumerate all 5-star inequalities
- Separate bigger stars heuristically

• • = • • = •

Linear Arrangement Problem

Comparison of Root Bounds

Name	n	m	UB	$LB_{LP,d_{ij}}$	LB _{WCOP}	LB _{BTW}
gd95c	62	144	506	442	489	506^{*}
gd96b	111	193	1416	1275	899	1396
gd96c	65	125	519	405	381	519^{*}
gd96d	180	228	2391	2021	1077	2357

글 🕨 🖌 글

э

• Betweenness approach provides very promising bounds

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

- Betweenness approach provides very promising bounds
- Deeper investigations of $P^G_{BTW} \rightarrow$ separation routines

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

- Betweenness approach provides very promising bounds
- Deeper investigations of $P^G_{BTW} \rightarrow$ separation routines
- Using general cut generation like target-cuts or mod-k-cuts

- Betweenness approach provides very promising bounds
- Deeper investigations of $P^G_{BTW} \rightarrow$ separation routines
- Using general cut generation like target-cuts or mod-k-cuts
- Using the knowledge on separating procedures for max-cut (for example shrinking)

4 B K 4 B K

- Betweenness approach provides very promising bounds
- Deeper investigations of $P^G_{BTW} \rightarrow$ separation routines
- Using general cut generation like target-cuts or mod-k-cuts
- Using the knowledge on separating procedures for max-cut (for example shrinking)
- Better branching rules

- Betweenness approach provides very promising bounds
- Deeper investigations of $P^G_{BTW} \rightarrow$ separation routines
- Using general cut generation like target-cuts or mod-k-cuts
- Using the knowledge on separating procedures for max-cut (for example shrinking)
- Better branching rules
- Behaviour of our code on planar graphs