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Mixed-Integer Linear Programs

• A mathematical program with linear objective function,
linear constraints and both continuous and integer
variables is a Mixed-Integer Linear Program (MILP)

• MILPs arise in several real-life situations

• MILP solvers are often used as a tool in the context of
solving Mixed-Integer Nonlinear Programs
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Mixed-Integer Linear Programs

• Consider the following MILP in standard form:

min c⊤x
Ax = b

x ≥ 0
∀j ∈ NI xj ∈ Z,















P

where c ∈ R
n, b ∈ R

m, A ∈ R
m×n and

NI ⊂ N = {1, . . . , n}.

• The Linear Program (LP) relaxation of P is obtained by
dropping the integrality constraints, and we denote it by P̄

• If the optimal solution x̄ to P̄ is integral, then it is optimal
for P
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Branch-and-Bound

• The standard method to solve MILPs is with a
Branch-and-Bound (BB) algorithm

• There are three basic necessary ingredients in the BB
algorithm:

1 Obtaining lower bounds
2 Obtaining upper bounds
3 Dividing a subproblem
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Branch-and-Bound

• The standard method to solve MILPs is with a
Branch-and-Bound (BB) algorithm

• There are three basic necessary ingredients in the BB
algorithm:

1 Obtaining lower bounds ← LP relaxation
2 Obtaining upper bounds
3 Dividing a subproblem
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Branch-and-Bound

• The standard method to solve MILPs is with a
Branch-and-Bound (BB) algorithm

• There are three basic necessary ingredients in the BB
algorithm:

1 Obtaining lower bounds ← LP relaxation
2 Obtaining upper bounds ← LP relaxation, heuristics
3 Dividing a subproblem
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Branch-and-Bound

• The standard method to solve MILPs is with a
Branch-and-Bound (BB) algorithm

• There are three basic necessary ingredients in the BB
algorithm:

1 Obtaining lower bounds ← LP relaxation
2 Obtaining upper bounds ← LP relaxation, heuristics
3 Dividing a subproblem ← our focus
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Branching on single variables

• Branching is usually done by changing the bounds of an
integer constrained variable:

• Let x̄ be the optimal solution to P̄, and let i ∈ NI such
that x̄i is fractional

• We divide P into P1 and P2 adding the constraints
xi ≤ ⌊x̄i⌋ (left branch) and xi ≥ ⌈x̄i⌉ (right branch) to
the two subproblems, respectively

• Very easy and fast approach
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Branching on general disjunctions

• Branching can occur with respect to any direction π ∈ R
n

by adding the constraints π⊤x ≤ β1 and π⊤x ≥ β2 with
β1 < β2 to P1 and P2 respectively, as long as no integer
feasible point is cut off

• Can this be profitable with respect to branching on single
variables?
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L. Liberti,

G. Nannicini

Introduction

Theoretical
foundations

Improved
general
disjunctions

Computational
experiments
(1)

A combined
branching
algorithm

Computational
experiments
(2)

Example



Improved
strategies for

branching
on general
disjunctions

G. Cornuéjols,
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Preliminaries

• Let D(π, π0) define the split disjunction
π⊤x ≤ π0 ∨ π⊤x ≥ π0 + 1, where π ∈ Z

n, π0 ∈ Z, πj = 0
for i /∈ NI , π0 =

⌊

π⊤x̄
⌋

• By integrality of (π, π0), any feasible solution to P
satisfies every split disjunction
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Definitions

• Let B ⊂ N be an optimal basis of P̄, let J = N \B be
the set of nonbasic variables

• The corresponding simplex tableau is given by:

xi = x̄i −
∑

j∈J

āijxj ∀i ∈ B

• For j ∈ J , let rj ∈ R
n be the extreme ray (associated with

xj) of the cone {x ∈ R
n | Ax = b∧ (xj ≥ 0 ∀j ∈ J)} with

apex x̄

• The rj ’s can be read directly from the simplex tableau
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Intersection cuts

• Let ǫ(π, π0) = π⊤x̄− π0

• Assume that the disjunction D(π, π0) is violated by x̄,
i.e. 0 < ǫ(π, π0) < 1

• The intersection cut associated with a basis B and a split
disjunction D(π, π0) is

∑

j∈J

xj

αj(π, π0)
≥ 1,

where ∀j ∈ J we define

αj(π, π0) =











− ǫ(π,π0)
π⊤rj ifπ⊤rj < 0

1−ǫ(π,π0)
π⊤rj ifπ⊤rj > 0

+∞ otherwise
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Intersection cuts and branching
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Mixed-Integer Gomory Cuts

• Mixed-Integer Gomory Cuts can be seen as intersection
cuts

• The split disjunction D(πi, πi
0) that defines the MIGC

associated to a row āi of the simplex tableau where xi is
basic can be read directly from the simplex tableau

• The corresponding αj(π, π0) is

αj(π, π0) =







max
(

x̄i−⌊x̄i⌋
āij−⌊āij⌋

, ⌈x̄i⌉−x̄i

⌈āij⌉−āij

)

if j ∈ J ∩NI

max
(

x̄i−⌊x̄i⌋
āij

, ⌈x̄i⌉−x̄i

−āij

)

if j ∈ J \NI

• By convention, αj(π, π0) is equal to +∞ when one of the
denominators is zero
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Improving the disjunctions

• We seek to find disjunctions that increase the αj ’s

• We consider linear combinations with integer coefficients
of the rows of the simplex tableau, so as to obtain new
rows that give rise to “stronger” disjunctions

• Recall the formula: both terms of the fraction are
nonlinear for j ∈ J ∩NI , while only the numerator is
nonlinear for j ∈ J \NI

• Thus, we focus on j ∈ J \NI : the numerator is nonlinear,
but we can aim to obtain a denominator as close to zero
as possible
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Some more notation

• Let BI = B ∩NI (basic integer variables), JC = J \NI

(nonbasic continuous variables)

• Define the matrix D ∈ R
|BI |×|JC | as the submatrix of A

which contains the coefficients on the nonbasic continuous
variables of the rows where an integer variable is basic

• The denominators of αj(π, π0)∀j ∈ J \NI for the
intersection cut associated with a row of the simplex
tableau are exactly the elements of the corresponding row
of D ⇒ a reduction of ‖di‖ should yield an increase in the
αj ’s

• We seek linear combinations (with integer coefficients) of
the rows of D that minimize the norm of the resulting row
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A quadratic optimization approach

• Idea: for each row dk of D, choose a subset of the rows
Rk ⊂ BI , and reduce ‖dk‖ as much as possible with a
linear combination of dk and dj ∀j ∈ Rk

• Quadratic convex minimization problem:

min
λk∈R

|Rk|
‖dk +

∑

j∈Rk

λk
j dj‖

• Can be solved via an |Rk + 1| × |Rk + 1| linear system

• We must round the coefficients λk
j to the nearest integer

⌊

λk
j

⌉

in order to get valid disjunctions
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L. Liberti,

G. Nannicini

Introduction

Theoretical
foundations

Improved
general
disjunctions

Computational
experiments
(1)

A combined
branching
algorithm

Computational
experiments
(2)

Final step

• Once the linear system is solved and we have the optimal
coefficients λk ∈ R

|Rk|, we do the following:

1 Round them to the nearest integer
2 Consider the norm of dk +

∑

j∈Rk

⌊

λk
j

⌉

dj

3 If ‖dk +
∑

j∈Rk

⌊

λk
j

⌉

dj‖ < ‖dk‖, then we use the row

ak +
∑

j∈Rk

⌊

λk
j

⌉

āj instead of row āk to compute the
split disjunction

4 Consider the possibly improved disjunction for branching,
otherwise use the original row

• The norm reduction step can be applied to all rows of the
simplex tableau in which an integer variable is basic or
only to a subset
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Choosing Rk

• The choice of Rk ⊂ BI ∀k is important

• We propose this approach to choose Rk associated with
row āk:

1 Fix a maximum number of rows M|Rk|

2 Pick the M|Rk| rows which have the smallest number of
nonzero coefficients on the nonbasic integer variables on
which āk is zero

• Reason: we would like the coefficients on the variables
∈ J ∩NI that are zero in row āk to be left unmodified

when we compute āk +
∑

j∈Rk

⌊

λk
j

⌉

āj
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L. Liberti,

G. Nannicini

Introduction

Theoretical
foundations

Improved
general
disjunctions

Computational
experiments
(1)

A combined
branching
algorithm

Computational
experiments
(2)

Computational experiments:

tested methods

• Implementation within Cplex 11.0

• Comparison of the following branching methods:
• branching on single variables (Simple Disjunctions, SD)
• branching on split disjunctions after the reduction step

that we propose (Improved General Disjunctions, IGD)
• branching on the split disjunctions that define the MIGCs

at the current basis (General Disjunctions, GD)
• a combination of the SD and IGD method (Combined

General Disjunction, CGD)
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Choosing the branching direction

• We applied strong branching

• Best branching decision:
• Generates the smallest number of feasible children, or, in

the case of a tie,
• Closes more gap, computed as min{c⊤x̄1, c⊤x̄2} where

x̄1, x̄2 are the optimal solutions of the LP relaxations of
the children nodes
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Dataset and parameters

• Our testbed is the union of miplib2.0, miplib3 and
miplib2003, after the removal of all instances that can
be solved to optimality in less than 10 nodes1, and the
instances where one node cannot be processed in less than
30 minutes2

• In total, the set consists in 96 heterogeneous instances

• The node selection strategy was set to best bound

• The value of the optimal solution was given as a cutoff
value for all those instances where the optimum is known

• No heuristics, no cutting planes

1
air01, air02, air03, air06, misc04, stein09

2
atlanta-ip, ds, momentum1, momentum2, momentum3, msc98-ip,

mzzv11, mzzv42z, net12, rd-rplusc-21, stp3d
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Branching for 1000 nodes

• At each node, the most promising 10 branching directions
are selected, then we apply strong branching

• For SD, we picked the 10 variables with largest fractionary
part (i.e. closer to 0.5)

• For GD and IGD, we picked the 10 disjunctions associated
with the MIGCs with largest distance cut off (closed form
formula)

• We solved up to 1000 nodes, and compared closed
integrality gap (if unsolved) or number of nodes (if solved)

• For IGD, we sum up at most 50 rows, i.e. M|Rk| = 49

• For this experiment only, we had to exclude 7 instances3,
as they took too much time

• All averages in the following are geometric

3
dano3mip, fast0507, manna81, mitre, protfold, sp97ar,

t1717
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Comparison: branching for 1000

nodes

Number of solved instances

Simple disjunctions (SD): 35
General disjunctions (GD): 42
Improved general disjunctions (IGD): 42

Number of instances with largest closed gap

Simple disjunctions (SD): 55
General disjunctions (GD): 56
Improved general disjunctions (IGD): 63
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Comparison: branching for 1000

nodes

Average gap closed
on instances not solved by any method

Simple disjunctions (SD): 9.36%
General disjunctions (GD): 13.78%
Improved general disjunctions (IGD): 14.15%

Average number of nodes
on instances solved by all methods

Simple disjunctions (SD): 92.7
General disjunctions (GD): 52.9
Improved general disjunctions (IGD): 43.2
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Analysis of the results

• Results suggest that IGD is capable of closing more gap
per node on a large number of instances

• A more detailed analysis shows that there are a few
instances where branching on general disjunctions is not
profitable (2 instances are solved by SD but not by GD or
IGD)

• This may also happen in zero gap instances, where the
enumeration of nodes with SD is usually more effective

• We decided to combine both the SD and the IGD method
into a single branching algorithm which tries to decide, for
each instance, if it is more effective to branch on simple
disjunctions or on general disjunctions
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Practical considerations

• Branching on general disjunctions is slower than using
simple disjunctions

• Branching on general disjunctions should be used only if it
is truly profitable ⇒ we used the amount of closed gap as
a measure of profit

• As the polyhedron may change, general disjunctions
should be periodically tested even when disabled
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A combined branching algorithm

• At each node, branching on GDs can be active or not
• If it is active, we test 10 possible branching decisions: 7

GDs, and 3 SDs
• GDs are picked only if they generate a smaller amount of

children nodes, or (in case of a tie) if the amount of closed
gap is at least 50% larger

• At the beginning, branching on GDs is active for 3 nodes
(increased effort at root node: 20 SDs, 20 GDs); whenever
a GD is chosen, branching on GDs is activated for the
following 10 nodes

• When it is deactivated, it is reactivated for one node after
100 nodes; permanently disabled after 10 consecutive
unfruitful activations
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Some more computational

experiments

• Full test set (96 instances)

• Heuristics are disabled, but cutting planes are enabled
(with default parameters)

• We run for 2 hours SD and CGD

• We compare number of nodes and closed integrality gap
after 2 hours (unsolved instances), or number of nodes
and solution time (solved instances)

• We measure gap closed only by branching, not by cuts
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Comparison: branching for 2 hours

Number of solved instances

Simple disjunctions (SD): 67
Combined general disjunctions (CGD): 70

Average number of nodes
on instances solved by both methods

Simple disjunctions (SD): 195.1
Combined general disjunctions (CGD): 98.0

Average CPU time [sec]
on instances solved by both methods

Simple disjunctions (SD): 3.03
Combined general disjunctions (CGD): 3.35



Improved
strategies for

branching
on general
disjunctions

G. Cornuéjols,
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Easy instances

• Among examples that were solved by both algorithms:
• bell3a required 15955 nodes using SD vs 20 using CGD
• bell5 required 773432 nodes using SD vs 24 using CGD
• gesa2 required 38539 nodes using SD vs 140 using CGD

• There is also an improvement in computing time by
several orders of magnitude on these three instances
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Comparison: branching for 2 hours

Average number of nodes
on instances not solved by either method

Simple disjunctions (SD): 35796.0
Combined general disjunctions (CGD): 15075.7

Average gap closed
on instances not solved by either method

Simple disjunctions (SD): 5.35%
Combined general disjunctions (CGD): 7.03%
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Difficult instances
SD algorithm CGD algorithm Gap

Closed Gap Closed Gap Closed

Instance Abs. Rel. Nodes Abs. Rel. Nodes By Cuts

10teams∗ 0 0% 11775 2 28.5% 398 71.3%
a1c1s1 337.58 3.21% 5340 371.423 3.54% 2578 62.29%
aflow40b 36.854 22.7% 20398 25.8243 15.9% 5477 57.3%
arki001 88.0556 6.83% 3612 580.27 45% 4000 28.27%
dano3mip 0.322586 - 8 0.374207 - 6 0%
danoint 0.310476 10.2% 5547 0.286139 9.44% 4790 2%
fast0507 0.262111 14.1% 587 0.0561795 3.03% 96 0%
gesa2 o∗ 84644.7 27.9% 195797 147352 48.5% 13181 51.4%
glass4 3293.85 0% 84369 3104.73 0% 79050 0%
harp2 199205 43.9% 74255 215937 47.5% 12565 32.6%
liu 214 - 108162 214 - 100347 0%
markshare1 0 0% 11027872 0 0% 2540405 0%
markshare2 0 0% 8606987 0 0% 2431791 0%
mas74 859.296 65.2% 2405902 641.509 48.7% 800207 4.6%
mkc 2.92749 6.1% 14486 6.52824 13.6% 8663 5.7%
noswot 0 0% 3192040 0 0% 1598812 0%
nsrand-ipx 158.293 6.82% 3932 222.726 9.6% 1431 49.08%
opt1217 0 0% 409010 1.33599 33.2% 316821 17%
protfold 2.32009 21.2% 140 2.14092 19.5% 150 3.6%
roll3000 127.615 7.12% 3083 293.192 16.4% 1406 40.68%
rout∗ 55.1337 57.6% 189312 94.9211 99.2% 28137 0.8%
set1ch 977.236 4.34% 120033 1355.82 6.02% 41034 86.06%
seymour 1.44368 7.54% 1251 1.09335 5.71% 688 41.66%
sp97ar 1.48955e+06 - 4231 1.41919e+06 - 318 0%
swath 28.3223 21.3% 20831 15.7973 11.9% 4724 34.9%
t1717 785.581 - 76 695.249 - 31 0%
timtab1 108754 14.8% 130014 103832 14.1% 35760 62.2%
timtab2 531157 - 50595 530454 - 12461 0%
tr12-30 183.374 0.158% 17852 691.388 0.594% 6883 99.142%
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A notorious instance: arki001

• The arki001 instance has been first solved only recently
by [Balas and Saxena, 2008]:

• A large computational effort is invested to generate rank-1
split cuts that close 83.05% of the integrality gap

• The remaining gap (16.95%) is closed by Cplex’s BB
algorithm in 643425 nodes

• If we run CGD on arki001 without time limits:
• 28.27% of the integrality gap is closed by Cplex’s cutting

planes with default parameters
• the remaining 71.73% is closed by our branching algorithm

in 925738 nodes

• Note that Balas and Saxena used the preprocessed
problem as input, while we always work with the original
instances (i.e. without preprocessing)



Improved
strategies for

branching
on general
disjunctions

G. Cornuéjols,
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Conclusions and future research

• In our experiments the combination between simple
disjunctions and general disjunctions seems clearly superior
to the traditional branching strategy

• The implementation of CGD could be made faster because
Cplex’s callable library is not optimized for branching on
general disjunctions

• There is great potential in branching on general
disjunctions, and it is useful for difficult instances:
studying different methods to obtain good branching
directions is promising for research

• Investigating the relationship between using split
disjunctions for branching and to generate cutting planes
is also interesting from a theoretical and computational
point of view
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...and that’s all

Thank you!
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