Algorithms for the
Bin Packing Problem with Conflicts

Albert E. Fernandes Muritiba *, Manuel lori °,
Enrico Malaguti*, Paolo Toth*

*Dipartimento di Elettronica, Informatica e Sistemistica,
Universita degli Studi di Bologna, ltaly

°Dipartimento di Scienze e Metodi dell'Ingegneria,
Universita degli Studi di Modena e Reggio Emilia, ltaly

Qutline

® Problem Definition

B

= UB

® Branch & Price

® An overall Algorithm

® Computational Experiments
® Conclusions

Bin Packing Problem with Conflicts (BPPC)

" We are given a set V of nitems, where each item / has an associated
positive weight w, and n identical bins of capacity C. In addition, we

are given an undirected graph G=(V,E) representing the conflicts

between items. The problem is to assign all items to the minimum
number of bins without exceeding C and in such a way that no bin
contains conflicting items.

| 1

|
O
C=6
2 3

The BPPC is NP-Hard: 2 very famous special cases:
- [E(G)/=0, Bin Packing Problem (BPP)

- C =0, Vertex Coloring Problem
(VCP)

" S
Set Covering Formulation for the BPPC

B | - family of all the maximal subsets of V representing feasible bins

" Binary variables: [1 if bin I L is used

A

0 otherwise
min ZXI (1)
10
Z x, =1 vav (2)
vl

X, D{O,l} orol (3)

Literature

PTAS, special cases, complexity results:

B H.L. Bodlaender and K. Jansen. On the complexity of scheduling
incompatible jobs with unit-times. (1993)

- (P1.9H9%;13en, A. Heritz, and J. Kuplinsky. Bounded vertex colorings of graphs.

®m K. Jansen and S. Oehring. Approximation algorithms for time constrained
scheduling. (1997)

m K. Jansen. An approximation scheme for bin packing with conflicts. (1999)

® . Pferschy and J. Schauer. The Knapsack Problem with Conflict Graphs.
(2008, available at optimization-online)

Computational paper:

® M. Gendreau, G. Laporte, and F. Semet. Heuristics and lower bounds for
the bin packing problem with conficts. (2004)

Bounding Procedures: BPP

® Dual feasible functions (Fekete and Schepers 2001)

(include the continuous relaxation bound and the bound by
Martello and Toth 1990 as special cases)

Bounding Procedures: VCP

The cardinality of any clique of the incompatibility graph G
represents a LB for the problem.

A fast greedy algorithm (Johnson 1974) can be used to compute a
maximal clique K of G(V,E):

Given an ordering of the vertices, consider the candidate vertices
W. Set W=V, K= 0 and iteratively:

Choose the vertex v of W of maximum degree and add it to the
current clique K.

Remove v and all vertices not adjacent to the clique from W.

Gendreau, Laporte and Semet (2004) proposed to consider G’(V,E’)
with E’ = E U {(i,j): w+w>C} and to compute K’ of G".

" N
Bounding Procedures: VCP

1

Problem: “heavy” vertices systematically have a high
degree in G’=(V, E’).

Bounding Procedures: VCP

A different idea: compute a maximal clique K of G=(V,E) through
Johnson algorithm.

Then, consider G’(V,E’) and expand Kto K” (possibly different
from K’) in G’. On average, K[> |[K’/.

" S
Bounding Procedures: constrained

packing lower bound LB,

® Proposed by Gendreau, Laporte and Semet (2004).
® Compute a maximal clique K’ of G’ by means of Johnson algorithm;

® A bin is used for each of the clique items, and then the largest amount
of items that can fit in these bins are inserted, possibly in a fractional
way, but by satisfying weight and compatibility constraints. For items
which cannot fit, new bins are used;

We propose to improve the maximal clique computation procedure:
compute Kon graph G and then expand itto K” on G’=(V,E’); on average
this improves the bound.

" S
Bounding Procedures: Matching

1 O—On
5 5 5

O O O

® 3 bins are needed, but all previous bounds would say that 2 suffice.
m We propose the following matching based LB

match*

Select (in a greedy fashion) a maximal inclusion subset S of items such
that at most 2 can fit into one bin. Let M be a maximum cardinality

matching of S on the complement of graph G (compatibility graph).

C=10

LB eicn = //V’/>+\(/S/ -2IMJ) = [S] - [M]

1 bin for each matched pair 1 bin for “singles”

" S
Greedy Heuristics: GLS

Gendreau, Laporte and Semet (2004) propose a set of greedy heuristics:

B Some are generalizations of the well known heuristics for the BPP, where
items are ordered by non increasing weight and then inserted into bins:
First Fit Decreasing, Best Fit Decreasing, Next Fit Decreasing

B QOthers integrate procedures for the BPP and VCP in more complex
algorithms.

® We improve these algorithms by considering orderings of the items based
on a surrogate weight, which considers also the degree of the items in G:

w :aﬁﬁ&(l—a)E@E
0C O

| E |

with 0<a<l

"
Evolutionary Algorithm

® |nspired from the Evolutionary Algorithm proposed by M., Monaci
and Toth for the VCP (2008)

begin
Initialize the pool with poolsize solutions
while not (problem is solved or timelimit) do
Randomly choose two solutions s,, s, from the pool

Apply the cross-over to (s,, s,) and generate s,
Improve s, through the Tabu Search procedure for L iterations
Replace the worst solution in the pool with s,

end

abu Search procedure

® Solution of the BPPC: partition of the items set V into subsets whose
weights do not exceed C and do not contain conflicting items
(independent sets).

® /mpasse Class Neighborhood (VCP, Morgenstern 1996): a target k
is required for the number of bins to be used. A solution sis a
partition of Vin k+17 bins in which all bins except possibly the last
one are feasible. Making the bin k+71 empty gives a feasible solution
using K bins.

" S
Tabu Search procedure (ctd.)

® To move from a solution s to a neighbor solution s’:
- randomly choose an unassigned item v (in bin k+17);
- assign vto a bin < k, and move all items w of
this bin, which are conflicting with v, to bin k+17;
- continue moving items to bin k+17 until the
capacity constraint IS not satisfied

e —a—
—Pa—

" S
Set Covering Formulation for the BPPC

B |- family of all the subsets of V representing feasible bins

" Binary variables: { 1 if bin I L is used

1

0 otherwise
minz=>») x (6)
t IDZ | (7)
S.1.
Z x, 21 vV
vl (8)
x, 0{0,1} ool

Solve the LP relaxation of Model (6) — (8), get z*. A valid lower bound is LB, = [z *[]

" S
Set Covering Formulation for the BPPC:
column generation

Model (6) — (8) has an exponential number of variables, thus to solve it we have to
use column generation techniques, i.e. to solve a Knapsack Problem with Conflicts
(slave problem) to determine the bin of maximum reduced profit:

max) 7Tz, (10)
2

Y wiz <C (11)

iLv

z;+z; <1 Ui, j: (G,)HUE (12)

z. 0{0,1 iav 13)

Where m; are the optimal values of the dual variables corresponding to (7)

"
Set Covering Formulation for the BPPC:
column generation

In order to solve the Knapsack Problem with Conflicts (slave model (10) — (13)) we
use a greedy algorithm: items are considered according to different orderings, and
inserted into the knapsack (bin) if they fit.

If the greedy algorithm cannot find a positive reduced profit column (bin), we solve
model (10) — (13) with Cplex.

In order to speed up the computation:
* we initialize the set of columns with very good columns from heuristic solutions;

* when solving model (10) — (13) with Cplex, we stop as soon as a positive
reduced profit column is found;

* we replace the incompatibility constraints (12) by a set of stronger clique
constraints.

"
Set Covering Formulation for the BPPC:
a Branch&Price algorithm

If the solution of the continuous relaxation of model (6) — (8) is
not integer, we embed the column generation algorithm in a
branching scheme, thus obtaining a Branch&Price algorithm.

* We branch on the variables, and choose as branching one
the most fractional one (experimentally, faster than branching
on the edges)

* We first set the branching variables to 1 and then to 0.
* We adopt a Depth First strategy.

"
An overall 4 Phases algorithm

We combined in an overall algorithm for BPPC the most effective
(according to computational evidence) procedures presented so far.
The algorithm starts with fast procedures and, if the problem is not
solved, moves to more effective (and time consuming) ones:

® | Phase - initial LB: DFF and CP improved in the cligue computation;
initial UB: improved heuristics. |If UB=LB stop.

® |l Phase - Evolutionary Algorithm with a given time limit (if the problem is
solved for a value of k>LB, we set k=k-1 and iterate) . If UB=LB stop.

® Il Phase - solve the continuous relaxation of the set covering formulation
SC, thus improving LB (and possibly obtaining the optimal solution if the
solution of the SC relaxation is integer). If UB=LB stop

® |V Phase — Apply the Branch & Price algorithm.

"
Computational Experiments

® All our programs were written in C and tested on a Pentium IV
at 3GHz with 2GB RAM, under Linux operating system.

® We compare our results with those obtained by Gendreau,
Laporte and Semet (2004). They considered 8 classes of
instances from Falkenauer (1996), each class containing 10
BPP instances. By adding, for the instances of each class,
random incompatibility graphs with densities varying from 0 to
0.9, they obtained 800 instances (100 for each class).

® We generate 800 instances according to their description, and
re-implemented their algorithms in order to have a fair (within
the limits of our implementation) comparison.

instances are available at www.or.deis.unibo.it

"
Computational Experiments

® When needed, we apply the Evolutionary Algorithm
with a time limit of 120 seconds, and we give to the
B&P a time limit of 10 hours.

® We initialize the pool of columns of the SC
formulation with all the columns corresponding to the
feasible solutions found by the greedy heuristics and
the Evolutionary Algorithm.

This speeds up the computation of a factor 2.

Computational Experiments: ratio UB/LB

1,045

1,04

1,035

1,03 -

1,025 -

1,02 -

1,015

1,01

1,005

1

GLS

FIMT (I Phase) 364/800 optimal solutions;

2

222/800 optimal solutions;

§

3

3

4

5

6

7

8

O GLS
E FIMT | Phase

2.9 s average computing time

0.5 s average computing time

Computational Experiments: ratio UB/LB

1,045

1,04

1,035 |]

1,03 |

1,025

1,02

O GLS
B FIMT | Phase
O FIMT Il Phase

1,015

1,01

1,005 ||

1
1 2 3

GLS 222/800 optimal solutions;
FIMT (I Phase) 364/800 optimal solutions;
FIMT (Il Phase) 499/800 optimal solutions;

| b

4

5

6

7

8

2.9 s avg. computing time
0.5 s avg. computing time
55.0 s avg. computing time

" JEE
Computational Experiments: ratio UB/LB

1,045
1,04]
1,035 H]]
103 |7
1,025 | B GLS
s H FIMT 1 Phase
O FIMT Il Phase
1,02 1+ B FIMT Ill Phase
1,015 |
1,01
1,005 | I
1
1 2 3 4 5 6 7 8
GLS 222/800 optimal solutions; 2.9 s avg. computing time

FIMT (I Phase) 364/800 optimal solutions; 0.5 s avg. computing time
FIMT (Il Phase) 499/800 optimal solutions; 55.0 s avg. computing time
FIMT (lll Phase) 602/800 optimal solutions; 260.6 s avg. computing time

" S
Computational Experiments: ratio UB/LB

1,007

1,006

1,005

1,004

1,003

1,002

1,001

1

B FIMT lll Phase
H FIMT IV Phase

FIMT (lll Phase) 602/800 optimal solutions; 260.6 s avg. computing time
FIMT (IV Phase) 780/800 optimal solutions; 1361.1 s avg. computing time
(790/800 with a special set up of the parameters)

" A
To conclude

® We presented new lower and upper bounds for the BPPC
problem, exploitlngthe double nature of the problem
(combination of VCP and BPP).

= We proposed an algorithm which integrates fast lower bound
computations, heuristics and metaheuristics.

Solutions generated during the computation are used to initialize
the pool of a Branch & Price algorithm.

" Computational experiments show that the new approach
improves on previously proposed approaches: in comparable
computing time, we can solve 364 (versus 222) instances over
800. With Iarger computing time, we can solve 780 of 800
instances of the considered set.

Thank you for your attention

