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Notation

Scalar product of two matrices A, B:
<A, B> = frace ATB = Z Ai’jBi,j
t,J

inducing the Frobenius norm || Al := ((A, A))*/?.

S" symmetric n x n-matrices.
S ={X € §" | X » 0} positive semidefinite matrices.
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Copositive Matrices

A matrix symmetric Y is called copositive if
al'Ya >0 Va > 0.
Cone of copsitive matrices:

C={Y eS"|a'Ya>0Va>0}.
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Copositive Matrices

A matrix symmetric Y is called copositive if
al'Ya >0 Va > 0.
Cone of copsitive matrices:

C={Y eS"|a'Ya>0Va>0}.

Challenge: X ¢ C is NP-complete decision problem.
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Dual cone

Dual cone C* of C In S8™:

Xel < (X,)Y)>0 VY ecC

— X e conv{aa® | a>0}.

Such X is called completely positive.

C* is the cone of completely positive matrices,
a closed, convex cone.
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Completely Positive Matrices

Let A = (aq,...,a;) be a nonnegative n x k& matrix, then
X:alalT—i—...+aka£:AAT

IS completely positive.

By Caratheodory’s theorem, for any X € C* there Is a
nonnegative A as above with £ < n(n + 1)/2.
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Basic Reference:

A. Berman, N. Shaked-Monderer:
Completely Positive Matrices, World Scientific 2003
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Semidefinite and Copositive Programs

Problems of the form

min(C, X) s.t. A(X) =10, X € §
are called Semidefinite Programs.
Problems of the form

min{C, X) s.t. A(X)=b, X €C

or
min{C, X) s.t. A(X)=0b, X €C*

are called Copositive Programs, because the primal or the
dual involves copositive matrices.
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Interior-Point Methods

Semidefinite programs can be efficiently solved by interior
point algorithms. One particular form of interior point
method is based on so-called Dikin ellipsoids:

For a given point Y in the interior of S define the “largest”
ellipsoid Ey such that Y + £y Is contained in S7.

By = {S | trace(SY 15y 1) <1}
= {S| Iy~ 125y 2|F < 1.

={S[IY~'S|F < 1}.
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Concept of Dikin interior point algorithm

Minimizing a linear objective function over the intersection
of an ellipsoid with an affine subspace is easy. (Solving a
system of linear equations).

Given X* in the interior of S with A(X) = b let AX be the

solution of

min{(C,AX) | AAX)=0, AX € Ex+}

and set X**1 = X% + ZAX. (Step length 1.)
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Convergence

For linear programs and fixed step length of at most % the

Dikin algorithm converges to an optimal solution.
Counterexamples for longer step lengths.

For semidefinite problems there exist examples where this
variant of interior point method converges to non-optimal
points

(Use other interior point methods based on barrier functions
or primal-dual systems.)
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Why Copositive Programs ?

Copositive Programs can be used to solve combinatorial
optimization problems.



Why Copositive Programs ?

Copositive Programs can be used to solve combinatorial
optimization problems.

e Stable Set Problem:
Let A be adjacency matrix of graph, £ be all ones matrix.
Theorem (DeKlerk and Pasechnik (SIOPT 2002))

a(G) =max{(F, X): (A+1,X)=1, X eC}

=min{y : y(A+ 1) — F € C}.

This is a copositive program with only one equation (in the
primal problem).
— a simple consequence of the Motzkin-Straus Theorem.
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Semidefinite relaxation —

Consider the (nonconvex) problem

min{xTQx+20T:C\aiTx:bi, 1=1:m, :1:>O}.

with add. constraints x; € {0,1} for i € B.
Think of X = 22 sothat z' Qz = (Q, X) and solve

( aiTXai:bg, ajx:bi, 1 =1:m
min ¢ (Q, X)) +2¢'z | |1 zT 0

, r, = X;;forie B
s X |~ 1 1,1

\
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— versus copositive Reformulation:

If the domain is bounded the copositive relaxation

( a,éTXai:b,?, a;x:bi, r=1:m )
i Xy+2e"z | (1 2T
min 4 (@, X) +2e | ! c C”, rvi=X;;forie B >
\ L X /

IS exact (Burer 2007).

Hence copositive programs form an NP-hard problem class.
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Approximating C*

We have now seen the power of copositive programming.

Since optimizing over C is NP-Hard, it makes sense to get
approximations of C or C*.

e To get relaxations, we need supersets of C*, or inner
approximations of C (and work on the dual cone). The
Parrilo hierarchy uses Sum of Squares and provides such
an outer approximation of C* (dual viewpiont!).

e \We can also consider inner approximations of C*. This
can be viewed as a method to generate feasible solutions of
combinatorial optimization problems ( primal heuristic!).
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Relaxations

Inner approximation of C.
C={M|z'Mz>0Vz >0}

Parrilo (2000) and DeKlerk, Pasechnik (2002) use the
following idea to approximate C from inside:

M e Ciff P(x Zaj mm>0 V.

A sufficient condition for this to hold is that
P(x) has a sum of squares (SOS) representation.

Theorem Parrilo (2000) : P(x) has SOS iff M = P + N,
where P = 0 and N > 0.
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Parrilo hierarchy

To get tighter approximations, Parrilo proposes to consider
SOS representations of

Py(w) = (Y a) ()

forr=0,1,.... (For r = 0 we get the previous case.)
Mathematical motivation by an old result of Polya.

Theorem Polya (1928):

If M strictly copositive then P, (x) is SOS for some
sufficiently large r.
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Inner approximations of C*

Some previous work by:

e Bomze, DeKlerk, Nesterov, Pasechnik, others:

Get stable sets by approximating C* formulation of the
stable set problem using optimization of quadratic over
standard simplex, or other local methods.

e Bundschuh, Dur (2008): linear inner and outer
approximations of C

.—p.22
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The (dual of the) copositive program

Recall the (dual form of the) copositive program:
(CP) min(C, X) s.t. A(X)=10b, X € C*,

Here, the linear constraints can be represented by m
symmetric matrices A;:

<A17X>

Ax) = |
<Am7X>



Assumption

We assume that the feasible set of the “copositive” program

(C'P) I1s bounded and satisfies Slater’s condition, i.e. t
there exists a matrix X in the interior of C* satisfying t
linear equations (A;, X) =b;, i =1 :m. These assum

nat
ne
ntions

iImply the existence of an optimal solution of (C'P) and
dual.

of its
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A feasible descent method

® Given X7 ¢ C* with (4;, X7) =b; and ¢ € (0, 1) consider
the regularized problem

min &(C,AX) + (1 — 5)HAXH?
(RP) s.t. (A, AX)=0,1=1:m
X' +AX ec

which has a strictly convex objective function and a
unique optimal solution denoted by AX".

# The norm | . ||; may change at each iteration.

® For large ¢ < 1 the point X7 + AX’ approaches a
solution of the copositive problem (C'P).
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Outer iteration

X+ X7 4 AXY

Lemma
If the norms || . ||; satisfy a global bound,

M < 00 : |H|; <M|H||*> VH=H" Vj

then the following result holds true:
Let X be any limit point of the sequence X’7. Then X solves

the copositive program (C'P).
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Inner 1teration
Assume X7 =VV ! with V > 0.
Write X/t = (V + AV)(V + AV) T, i.e.
AX = AX(AV) =VAV' + AVVT + AVAV .

Thus, the regularized problem (1 P) is equivalent to the
nonconvex program

min e(C, AX(AV)) + (1 — )HAX(AV)H?
(NC) s.t. (A, AX(AV)) =0,i=1:m
V+AV > 0.
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Caution

By construction, the regularized problem (2 P) and the
nonconvex program (N (') are equivalent.
(RP) has a unique local — and global — optimal solution.

However, (NC') may have multiple local (nonglobal)
solutions;

the equivalence only refers to the global solution of (N ().
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Eliminating AX

® Replace the norm ||[AX(AV)]|; with the (semi-) norm

IAV]|y == |[VAVT + AVV T
~ |[VAVI + AVV £ AVAV || = [AX(AV)]].

# If the Frobenius norm ||AV|| is used instead of | AV||y
the subproblems are very sparse.
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\We obtain

min € [2(CV,AV) + (CAV,AV)] + (1 — &) ||AV]?
st (AAV,AV) +2(A4,V,AV)Y =0, i=1:m
V+AV € RV

which is equivalent to (RFP) and (NC') when |JAX]|; IS
replaced with the regularization term ||AV||.
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Finally,

Since ||AV]| is small when ¢ > 0 is small, we linearize the

quadratic constraints (ignore the term AVAV ")
= Linearized Problem (LP)

(plus a simple convex quadratic objective)
Fixed point iteration to satisfy the constraints:

min e(C(2V + AV AV + (1 — )| AV £ AV||? + 7| AV |2
s.t. (A;2QV + AVID AV =5, i=1:m
V 4+ AVl 4 AV € RV

.—p.32
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Input: e < 1/2 and V > O with (A4;, VV' ') = b, for all i.

1.
2.

Set AV .—0Oand s :=0foralli. Setl=1and r, := 1.

Solve the linearized problem (L. P) and denote the
optimal solution by AV,

. Update AVeld .— Ayed 4 AV and

S; .= b; — <A¢(2V + AVOld), V + AVOld>.

I |JAVO) > 1 sete = ¢/2.
. If JAVY| &~ 0: Stop, AV = AV + AV approximately

solves (NC') locally.

. Else update [ := 1+ 1, 7, := [, and go to Step 2.

.—p.34



Subproblems (inner loop)

min <é,AV>+P“AV|]2
st. (A, AVY =35, i=1:m,
V+AV € R,

a strictly convex quadratic problem over a polyhedron. In
vector form,

min{ET:C+p:CT:C:&Z»Tx:§7;, 1=1:m, :13+UZO}.

When m 1s small, n < 500 and k£ < 1000 this can be solved

on a standard PC.
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A negative example:

(Remember — this is an NP-hard problem.)

If rank (V) < 2 then the mapping AV — VAV + AVV T is
not surjective, and hence, there does not exist a Lipschitz
continuous function AV s — AXj. (This lack of Lipschitz
continuity was exploited when constructing examples such
that (NC') has local solutions even for tiny € > 0.)

Lemma:
If V is a rectangular matrix such that Vv - 0, then the

map AV — VAV + AVV T is surjective.
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A Dikin ellipsoid approach

#® LetV > O. The Dikin ellipsoid FEy, for the set {V > O} is
defined by

Ev = {AV | |AV/V]F <1},

where the division AV /V is taken componentwise.
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Dikin-type algorithm

Let V > O be given with VV T = O.
Select some small value € € (0,1) and £ > 0.
Set s; :=b; — <AZV, V> and [ := 0.

1. Solve
min (2C'V,AV)
s.t. QA V,AV) =5, 1=1:m
AV € eEy

and denote the optimal solution by AV,
2. Update V :=V + AV and §; :== b; — (4;V, V).

3. Update [ := 1+ 1. If ||[AV||s < £ stop, else go to Step 1.
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Computational results (here £ = 2n)

A sample instance with n = 60, m = 100.
Zsdp = —9600,82, Zsaprnonneg = —172.19, Zeop = —69.75
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Computational results (here kK = 2n)

A sample instance with n = 60, m = 100.

Zedp = —9600, 82, Zdpinonneg = —172.19, 200y = —69.75

it [b-A(X)| £(X)
1 0.002251 -68.7274
5 0.000014 -69.5523
10 0.000001 -69.6444
15 0.000001 -69.6887
20 0.000000 -69.6963

The number of inner iterations was set to 5, column 1

shows the outer iteration count.
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Computational results (here kK = 2n)

A sample instance with n = 60, m = 100.

Zedp = —9600, 82, Zdpinonneg = —172.19, 200y = —69.75

it [b-A(X)| £(X)
1 0.002251 -68.7274
5 0.000014 -69.5523
10 0.000001 -69.6444
15 0.000001 -69.6887
20 0.000000 -69.6963

The number of inner iterations was set to 5, column 1

shows the outer iteration count.

But starting point: V0 = .95 Vopt + .05 rand
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Computational results (2)

Example (continued). recall n = 60, m = 100.
Zsdp = —9600, 82, Zsdptnonneg = —172.19, Zeop = —69.75
start iter |b-A(X)| f(x)
(@) 20 0.000000 -69.696
(b) 20 0.000002 -69.631
(c) 50 0.000008 -69.402

Different starting points:

(@ V=.95*V,, +.05*rand
(b) V=.90*V,, +.10 *rand
(c) V =rand(n, 2n)
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Random Starting Point

Example (continued), n = 60, m = 100.

Zedp = —9600,82, Zsdprnonneg = —172.19, 2eop = —69.75

it |b-AX)| f(x)
1 6.121227 1831.5750
5 0.021658 101.1745
10 0.002940  -43.4477
20 0.000147  -67.0989
30 0.000041 -68.7546
40 0.000015  -69.2360
50 0.000008  -69.4025

Starting point: V0 = rand(n, 2n)
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More results

nom opt found ||b— A(X)|
50 100 314.48 314.90 4 -107°
60 120 -266.99 -266.48 4 -107°
70 140 -158.74 -157.55 3 107
80 160 -703.75 -701.68 5 .107°
100 100 -659.65 -655.20 8 -107°

Starting point in all cases: rand(n,2n)
Inner iterations: 5

Outer Iiterations: 30

The code works on random instances. Now some more

serious experiments.
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Dikin vs. QP-formulation

Comp. pos. reformulation of max-clique problem:
max(F, X)such that trace (X) =1, trace (AgX) =0, X € C*

Only two equations but many local optima.
Computation times in the order of a few minutes.

Problem Nodes | Max-Clique | QP Dikin

brock2004 | 200 17 16.00 | 12.97
c-fat200-1 200 12 12.00 | 11.92
c-fat200-5 200 58 58.00 | 56.21
namming6-2 | 64 32 32.00 | 32.00
namming8-2 | 256 128 128.0 | 124.4
kellerd 171 11 9 6.971

.—p.45
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Sufficient condition for Non-copositivity

To show that M ¢ C, consider
min{z! Mz | efz =1, z > 0}

and try to solve this through

T
min{(M, X) | e’z =1,(E,X) = 1,( 1 :;( ) €C'}.
X

Our method is local, but once we have feasible solution
with negative value, we have a certificate for M ¢ C.

We apply this to get another heuristic for stable sets.
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Stable sets - second approach

If we can show that for some integer ¢
Q=t(A+1)—J

IS not copositive, then a(G) >t + 1.

.~ p.47



Stable sets - second approach

If we can show that for some integer ¢
Q=t(A+1)—J

IS not copositive, then «(G) > ¢ + 1. Hence we consider
min{z! Qz : ¢!z = 1,7 > 0} and translate this into

min{(Q, X) : el z =1, <J’X>1’<315 i) cC'}.

If we find solution with value < 0, then we have certificate
that a(G) >t + 1.

.—p.48



Stable sets - second approach

If we can show that for some integer ¢
Q=t(A+1)—J

IS not copositive, then «(G) > ¢ + 1. Hence we consider
min{z! Qz : ¢!z = 1,7 > 0} and translate this into

T
min{(Q, X) :elx =1,(J, X) = 1,( b ) cC'}.
r X

If we find solution with value < 0, then we have certificate
that a(G) >t + 1.

e Note that we prove existence of stable set of size ¢t + 1,
without actually providing such a set.
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Further (preliminary) experiments

Some DIMACS graphs (use k£ = 50 — very quick)

name n w direct dual
san200-1 | 200 30 30 30
san200-2 | 200 18 14 14
san200-3 | 200 70 70 70
san200-4 | 200 60 60 60
san200-5 | 200 44 35 44
nhat500-1 | 500 9 9 9
ohat500-2 | 500 36 36 36
ohat500-3 | 500 > 50 48 49
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Some more results (direct approach):

Some DIMACS graphs (use k£ = 50 — very quick)

name n w direct
brock200-1 | 200 21 20
brock200-2 | 200 12 10
brock200-3 | 200 15 13
brock200-4 | 200 17 16
brock400-1 | 400 27 24
brock400-2 | 400 29 23
brock400-3 | 400 31 23
brock400-4 | 400 33 24
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Last Slide

We have seen the power of copositivity.
Copositive Programming is an exciting new field with many
open research problems.

Relaxations: The Parrilo hierarchy is computationally too
expensive. Other way to approximate CP?

Heuristics: Unfortunately, the subproblem may have local
solutions, which are not local minima for the original
descent step problem.

Further technical detalls in a forthcoming paper by I.
Bomze, F. J. and F. Rend|.: Quadratic factorization
heuristics for copositive programming, technical report,
(2009).
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