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Notation

Scalar product of two matrices A,B:

〈A,B〉 := trace ATB ≡
∑

i,j

Ai,jBi,j

inducing the Frobenius norm ‖A‖F := (〈A,A〉)1/2.

Sn symmetric n × n-matrices.
Sn

+ = {X ∈ Sn | X � 0} positive semidefinite matrices.
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Copositive Matrices

A matrix symmetric Y is called copositive if

aT Y a ≥ 0 ∀a ≥ 0.

Cone of copsitive matrices:

C = {Y ∈ Sn | aT Y a ≥ 0 ∀a ≥ 0}.
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Copositive Matrices

A matrix symmetric Y is called copositive if

aT Y a ≥ 0 ∀a ≥ 0.

Cone of copsitive matrices:

C = {Y ∈ Sn | aT Y a ≥ 0 ∀a ≥ 0}.

Challenge: X /∈ C is NP-complete decision problem.
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Dual cone

Dual cone C∗ of C in Sn:

X ∈ C∗ ⇐⇒ 〈X,Y 〉 ≥ 0 ∀Y ∈ C

⇐⇒ X ∈ conv{aaT | a ≥ 0}.

Such X is called completely positive.

C∗ is the cone of completely positive matrices,
a closed, convex cone.
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Completely Positive Matrices

Let A = (a1, . . . , ak) be a nonnegative n × k matrix, then

X = a1a
T
1 + . . . + aka

T
k = AAT

is completely positive.

By Caratheodory’s theorem, for any X ∈ C∗ there is a
nonnegative A as above with k ≤ n(n + 1)/2.
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Basic Reference:

A. Berman, N. Shaked-Monderer:
Completely Positive Matrices, World Scientific 2003
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Semidefinite and Copositive Programs

Problems of the form

min〈C,X〉 s.t. A(X) = b, X ∈ Sn
+

are called Semidefinite Programs.

Problems of the form

min〈C,X〉 s.t. A(X) = b, X ∈ C

or
min〈C,X〉 s.t. A(X) = b, X ∈ C∗

are called Copositive Programs, because the primal or the
dual involves copositive matrices.
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Interior-Point Methods

Semidefinite programs can be efficiently solved by interior
point algorithms. One particular form of interior point
method is based on so-called Dikin ellipsoids:

For a given point Y in the interior of Sn
+ define the “largest”

ellipsoid EY such that Y + EY is contained in Sn
+.

EY := {S | trace(SY −1SY −1) ≤ 1}

= {S | ‖Y −1/2SY −1/2‖2
F ≤ 1}.

= {S | ‖Y −1S‖2
F ≤ 1}.
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Concept of Dikin interior point algorithm

Minimizing a linear objective function over the intersection
of an ellipsoid with an affine subspace is easy. (Solving a
system of linear equations).
Given Xk in the interior of Sn

+ with A(X) = b let ∆X be the
solution of

min{〈C,∆X〉 | A(∆X) = 0 , ∆X ∈ EXk}

and set Xk+1 = Xk + 1

2
∆X. (Step length 1

2
.)
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Convergence

For linear programs and fixed step length of at most 2

3
the

Dikin algorithm converges to an optimal solution.
Counterexamples for longer step lengths.
(Tsuchiya et al)

For semidefinite problems there exist examples where this
variant of interior point method converges to non-optimal
points (Muramatsu).

(Use other interior point methods based on barrier functions
or primal-dual systems.)
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Why Copositive Programs ?

Copositive Programs can be used to solve combinatorial
optimization problems.
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Why Copositive Programs ?

Copositive Programs can be used to solve combinatorial
optimization problems.

• Stable Set Problem:
Let A be adjacency matrix of graph, E be all ones matrix.
Theorem (DeKlerk and Pasechnik (SIOPT 2002))

α(G) = max{〈E,X〉 : 〈A + I,X〉 = 1, X ∈ C∗}

= min{y : y(A + I) − E ∈ C}.

This is a copositive program with only one equation (in the
primal problem).
– a simple consequence of the Motzkin-Straus Theorem.
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Semidefinite relaxation –

Consider the (nonconvex) problem

min
{

x⊤Qx + 2c⊤x | ai
⊤x = bi , i = 1 : m, x ≥ 0

}

.

with add. constraints xi ∈ {0, 1} for i ∈ B.

Think of X = xx⊤ so that x⊤Qx = 〈Q,X〉 and solve

min











〈Q,X〉 + 2c⊤x |

a⊤i Xai = b2
i , a⊤i x = bi, i = 1 : m

[

1 x⊤

x X

]

� 0, xi = Xi,i for i ∈ B











.

. – p.16



– versus copositive Reformulation:

If the domain is bounded the copositive relaxation

min











〈Q,X〉 + 2c⊤x |

a⊤i Xai = b2
i , a⊤i x = bi, i = 1 : m

[

1 x⊤

x X

]

∈ C∗, xi = Xi,i for i ∈ B











is exact (Burer 2007).

Hence copositive programs form an NP-hard problem class.
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Approximating C∗

We have now seen the power of copositive programming.

Since optimizing over C is NP-Hard, it makes sense to get
approximations of C or C∗.

• To get relaxations, we need supersets of C∗, or inner
approximations of C (and work on the dual cone). The
Parrilo hierarchy uses Sum of Squares and provides such
an outer approximation of C∗ (dual viewpiont!).

• We can also consider inner approximations of C∗. This
can be viewed as a method to generate feasible solutions of
combinatorial optimization problems ( primal heuristic!).
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Relaxations

Inner approximation of C.

C = {M | xTMx ≥ 0 ∀x ≥ 0}.

Parrilo (2000) and DeKlerk, Pasechnik (2002) use the
following idea to approximate C from inside:

M ∈ C iff P (x) :=
∑

ij

x2
i x

2
jmij ≥ 0 ∀x.

A sufficient condition for this to hold is that
P (x) has a sum of squares (SOS) representation.

Theorem Parrilo (2000) : P (x) has SOS iff M = P + N ,
where P � 0 and N ≥ 0.
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Parrilo hierarchy

To get tighter approximations, Parrilo proposes to consider
SOS representations of

Pr(x) := (
∑

i

x2
i )

rP (x)

for r = 0, 1, . . .. (For r = 0 we get the previous case.)
Mathematical motivation by an old result of Polya.

Theorem Polya (1928):
If M strictly copositive then Pr(x) is SOS for some
sufficiently large r.
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Inner approximations of C∗

Some previous work by:

• Bomze, DeKlerk, Nesterov, Pasechnik, others:
Get stable sets by approximating C∗ formulation of the
stable set problem using optimization of quadratic over
standard simplex, or other local methods.

• Bundschuh, Dür (2008): linear inner and outer
approximations of C
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The (dual of the) copositive program

Recall the (dual form of the) copositive program:

(CP ) min〈C,X〉 s.t. A(X) = b, X ∈ C∗,

Here, the linear constraints can be represented by m
symmetric matrices Ai:

A(X) =







〈A1, X〉
...

〈Am, X〉






.
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Assumption

We assume that the feasible set of the “copositive” program
(CP ) is bounded and satisfies Slater’s condition, i.e. that
there exists a matrix X in the interior of C∗ satisfying the
linear equations 〈Ai, X〉 = bi , i = 1 : m. These assumptions
imply the existence of an optimal solution of (CP ) and of its
dual.
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A feasible descent method

Given Xj ∈ C∗ with 〈Ai, X
j〉 = bi and ε ∈ (0, 1) consider

the regularized problem

(RP )

min ε〈C,∆X〉 + (1 − ε)‖∆X‖2
j

s.t. 〈Ai,∆X〉 = 0 , i = 1 : m

Xj + ∆X ∈ C∗

which has a strictly convex objective function and a
unique optimal solution denoted by ∆Xj.

The norm ‖ . ‖j may change at each iteration.

For large ε < 1 the point Xj + ∆Xj approaches a
solution of the copositive problem (CP ).
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Outer iteration

Xj+1 := Xj + ∆Xj

Lemma
If the norms ‖ . ‖j satisfy a global bound,

∃M < ∞ : ‖H‖2
j ≤ M‖H‖2 ∀ H = H⊤ ∀ j

then the following result holds true:

Let X̄ be any limit point of the sequence Xj. Then X̄ solves

the copositive program (CP ).
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Inner iteration

Assume Xj = V V ⊤ with V ≥ 0.
Write Xj+1 = (V + ∆V )(V + ∆V )⊤, i.e.

∆X = ∆X(∆V ) := V ∆V ⊤ + ∆V V ⊤ + ∆V ∆V ⊤, .

Thus, the regularized problem (RP ) is equivalent to the
nonconvex program

(NC)

min ε〈C,∆X(∆V )〉 + (1 − ε)‖∆X(∆V )‖2
j

s.t. 〈Ai,∆X(∆V )〉 = 0 , i = 1 : m

V + ∆V ≥ O .
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Caution

By construction, the regularized problem (RP ) and the
nonconvex program (NC) are equivalent.
(RP ) has a unique local – and global – optimal solution.
However, (NC) may have multiple local (nonglobal)
solutions;

the equivalence only refers to the global solution of (NC).
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Eliminating ∆X

Replace the norm ‖∆X(∆V )‖j with the (semi-) norm

‖∆V ‖V := ‖V ∆V ⊤ + ∆V V ⊤‖

≈ ‖V ∆V ⊤ + ∆V V ⊤ + ∆V ∆V ⊤‖ = ‖∆X(∆V )‖.

If the Frobenius norm ‖∆V ‖ is used instead of ‖∆V ‖V

the subproblems are very sparse.
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We obtain

min ε [2〈CV ,∆V 〉 + 〈C∆V ,∆V 〉] + (1 − ε)‖∆V ‖2

s.t. 〈Ai∆V ,∆V 〉 + 2〈AiV ,∆V 〉 = 0 , i = 1 : m

V + ∆V ∈ IRn×k
+

which is equivalent to (RP ) and (NC) when ‖∆X‖j is
replaced with the regularization term ‖∆V ‖.
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Finally,

Since ‖∆V ‖ is small when ǫ > 0 is small, we linearize the
quadratic constraints (ignore the term ∆V ∆V ⊤)
⇒ Linearized Problem (LP )
(plus a simple convex quadratic objective)

Fixed point iteration to satisfy the constraints:

min ε〈C(2V + ∆V old),∆V 〉 + (1 − ε)‖∆V old + ∆V ‖2 + τl‖∆V ‖2

s.t. 〈Ai(2V + ∆V old),∆V 〉 = s̃i , i = 1 : m

V + ∆V old + ∆V ∈ IRn×k
+ ,
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Input: ε ≤ 1/2 and V ≥ O with 〈Ai, V V ⊤〉 = bi for all i.

1. Set ∆V old := O and s̃i := 0 for all i. Set l = 1 and τ1 := 1.

2. Solve the linearized problem (LP ) and denote the
optimal solution by ∆V l.

3. Update ∆V old := ∆V old + ∆V l and
s̃i := bi − 〈Ai(2V + ∆V old), V + ∆V old〉.

4. If ‖∆V old‖ > 1 set ε = ε/2.

5. If ‖∆V l‖ ≈ 0: Stop, ∆V := ∆V old + ∆V l approximately
solves (NC) locally.

6. Else update l := l + 1, τl := l, and go to Step 2.
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Subproblems (inner loop)

min 〈C̃,∆V 〉 + ρ‖∆V ‖2

s.t. 〈Ãi,∆V 〉 = s̃i , i = 1 : m,

V + ∆V ∈ IRn×k
+ ,

a strictly convex quadratic problem over a polyhedron. In
vector form,

min
{

c̃⊤x + ρx⊤x : ã⊤i x = s̃i , i = 1 : m, x + v ≥ o
}

.

When m is small, n ≤ 500 and k ≤ 1000 this can be solved

on a standard PC.
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A negative example:

(Remember – this is an NP-hard problem.)

If rank (V ) < n
2

then the mapping ∆V 7→ V ∆V ⊤ + ∆V V ⊤ is
not surjective, and hence, there does not exist a Lipschitz
continuous function ∆V δ 7→ ∆Xδ. (This lack of Lipschitz
continuity was exploited when constructing examples such
that (NC) has local solutions even for tiny ǫ > 0.)

Lemma:
If V is a rectangular matrix such that V V T ≻ 0, then the
map ∆V 7→ V ∆V ⊤ + ∆V V ⊤ is surjective.
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A Dikin ellipsoid approach

Let V > O. The Dikin ellipsoid EV for the set {V ≥ O} is
defined by

EV := {∆V | ‖∆V /V ‖F ≤ 1},

where the division ∆V /V is taken componentwise.
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Dikin-type algorithm

Let V > O be given with V V ⊤ ≻ O.
Select some small value ǫ ∈ (0, 1) and ε̃ > 0.
Set s̃i := bi − 〈AiV , V 〉 and l := 0.

1. Solve
min 〈2CV ,∆V 〉

s.t. 〈2AiV ,∆V 〉 = s̃i , i = 1 : m

∆V ∈ ǫEV ,

and denote the optimal solution by ∆V l.

2. Update V := V + ∆V l and s̃i := bi − 〈AiV , V 〉.

3. Update l := l + 1. If ‖∆V ‖2 < ε̃ stop, else go to Step 1.
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Computational results (here k = 2n)

A sample instance with n = 60, m = 100.
zsdp = −9600, 82, zsdp+nonneg = −172.19, zcop = −69.75
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Computational results (here k = 2n)

A sample instance with n = 60, m = 100.
zsdp = −9600, 82, zsdp+nonneg = −172.19, zcop = −69.75

it |b-A(X)| f(x)
1 0.002251 -68.7274
5 0.000014 -69.5523

10 0.000001 -69.6444
15 0.000001 -69.6887
20 0.000000 -69.6963

The number of inner iterations was set to 5, column 1
shows the outer iteration count.
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Computational results (here k = 2n)

A sample instance with n = 60, m = 100.
zsdp = −9600, 82, zsdp+nonneg = −172.19, zcop = −69.75

it |b-A(X)| f(x)
1 0.002251 -68.7274
5 0.000014 -69.5523

10 0.000001 -69.6444
15 0.000001 -69.6887
20 0.000000 -69.6963

The number of inner iterations was set to 5, column 1
shows the outer iteration count.

But starting point: V 0 = .95 Vopt + .05 rand
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Computational results (2)

Example (continued). recall n = 60, m = 100.
zsdp = −9600, 82, zsdp+nonneg = −172.19, zcop = −69.75

start iter |b-A(X)| f(x)
(a) 20 0.000000 -69.696
(b) 20 0.000002 -69.631
(c) 50 0.000008 -69.402

Different starting points:
(a) V = .95 * Vopt + .05 * rand
(b) V = .90 * Vopt + .10 * rand
(c) V = rand(n, 2n)
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Random Starting Point

Example (continued), n = 60, m = 100.
zsdp = −9600, 82, zsdp+nonneg = −172.19, zcop = −69.75

it |b-A(X)| f(x)
1 6.121227 1831.5750
5 0.021658 101.1745

10 0.002940 -43.4477
20 0.000147 -67.0989
30 0.000041 -68.7546
40 0.000015 -69.2360
50 0.000008 -69.4025

Starting point: V 0 = rand(n, 2n)
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More results

n m opt found ‖b − A(X)‖

50 100 314.48 314.90 4 ·10−5

60 120 -266.99 -266.48 4 ·10−5

70 140 -158.74 -157.55 3 ·10−5

80 160 -703.75 -701.68 5 ·10−5

100 100 -659.65 -655.20 8 ·10−5

Starting point in all cases: rand(n,2n)
Inner iterations: 5
Outer iterations: 30

The code works on random instances. Now some more
serious experiments.
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Dikin vs. QP-formulation

Comp. pos. reformulation of max-clique problem:

max〈E,X〉such that trace (X) = 1, trace (AGX) = 0, X ∈ C∗

Only two equations but many local optima.
Computation times in the order of a few minutes.

Problem Nodes Max-Clique QP Dikin
brock200 4 200 17 16.00 12.97
c-fat200-1 200 12 12.00 11.92
c-fat200-5 200 58 58.00 56.21
hamming6-2 64 32 32.00 32.00
hamming8-2 256 128 128.0 124.4
keller4 171 11 9 6.971

Table 1: Comparison, QP-formulation – Dikin . – p.45



Sufficient condition for Non-copositivity

To show that M /∈ C, consider

min{xT Mx | eTx = 1, x ≥ 0}

and try to solve this through

min{〈M,X〉 | eTx = 1, 〈E,X〉 = 1,

(

1 xT

x X

)

∈ C∗}.

Our method is local, but once we have feasible solution
with negative value, we have a certificate for M /∈ C.

We apply this to get another heuristic for stable sets.
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Stable sets - second approach

If we can show that for some integer t

Q = t(A + I) − J

is not copositive, then α(G) ≥ t + 1.
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Stable sets - second approach

If we can show that for some integer t

Q = t(A + I) − J

is not copositive, then α(G) ≥ t + 1. Hence we consider
min{xTQx : eTx = 1, x ≥ 0} and translate this into

min{〈Q,X〉 : eTx = 1, 〈J,X〉 = 1,

(

1 xT

x X

)

∈ C∗}.

If we find solution with value < 0, then we have certificate
that α(G) ≥ t + 1.
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Stable sets - second approach

If we can show that for some integer t

Q = t(A + I) − J

is not copositive, then α(G) ≥ t + 1. Hence we consider
min{xTQx : eTx = 1, x ≥ 0} and translate this into

min{〈Q,X〉 : eTx = 1, 〈J,X〉 = 1,

(

1 xT

x X

)

∈ C∗}.

If we find solution with value < 0, then we have certificate
that α(G) ≥ t + 1.
• Note that we prove existence of stable set of size t + 1,
without actually providing such a set.
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Further (preliminary) experiments

Some DIMACS graphs (use k = 50 – very quick)

name n ω direct dual
san200-1 200 30 30 30
san200-2 200 18 14 14
san200-3 200 70 70 70
san200-4 200 60 60 60
san200-5 200 44 35 44

phat500-1 500 9 9 9
phat500-2 500 36 36 36
phat500-3 500 ≥ 50 48 49
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Some more results (direct approach):

Some DIMACS graphs (use k = 50 – very quick)

name n ω direct
brock200-1 200 21 20
brock200-2 200 12 10
brock200-3 200 15 13
brock200-4 200 17 16
brock400-1 400 27 24
brock400-2 400 29 23
brock400-3 400 31 23
brock400-4 400 33 24
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Last Slide

We have seen the power of copositivity.
Copositive Programming is an exciting new field with many
open research problems.

Relaxations: The Parrilo hierarchy is computationally too
expensive. Other way to approximate CP?

Heuristics: Unfortunately, the subproblem may have local
solutions, which are not local minima for the original
descent step problem.

Further technical details in a forthcoming paper by I.
Bomze, F. J. and F. Rendl.: Quadratic factorization
heuristics for copositive programming, technical report,
(2009).
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