How hard is it to find extreme Nash equilibria in network congestion games?

E. Gassner <u>J. Hatzl</u> Graz University of Technology, Austria

S.O. Krumke H. Sperber University of Kaiserslautern, Germany

G. Woeginger Eindhoven University of Technology, The Netherlands

13th Combinatorial Optimization Workshop Aussois, January 2009

NETWORK CONGESTION GAMES

JANUARY 2009

- Problem Formulation
- Preliminary Results
- Omplexity Results for Worst Nash Equilibria
- Omplexity Results for Best Nash Equilibria

4 冊

3 N 3

- A directed graph G(V, E) with multiple edges
- A source s and a sink t
- Non-decreasing latency functions $\ell_e : \mathbb{N}_0 \to \mathbb{R}_0^+$
- N users, each routing the same amount of unsplittable flow
- Strategy set for all users: \mathcal{P} set of all simple *s*-*t*-paths

- A directed graph G(V, E) with multiple edges
- A source *s* and a sink *t*
- Non-decreasing latency functions $\ell_e:\mathbb{N}_0\to\mathbb{R}_0^+$
- N users, each routing the same amount of unsplittable flow
- Strategy set for all users: \mathcal{P} set of all simple *s*-*t*-paths

THE MODEL

A flow is a function $f : \mathcal{P} \to \mathbb{N}_0$. The latency on a path $P \in \mathcal{P}$ is the sum of the latencies on its edges, i.e.,

$$\ell_P(f) := \sum_{e \in P} \ell_e \left(\sum_{P \in \mathcal{P}: e \in P} f_P \right)$$

Given a flow f the social cost are given by

$$C_{\max}(f) := \max_{P \in \mathcal{P}: f_P > 0} \ell_P(f).$$

$$C_{\max}(f) = \max\{1+3, 2+3, 1.5\} = 5$$

HATZL (TUG)

4 / 29

HATZL (

DEFINITION (NASH EQUILIBRIUM)

A flow f is a Nash equilibrium, iff for all paths P_1 , P_2 with $f_{P_1} > 0$ we have

$$\ell_{P_1}(f) \leq \ell_{P_2}(\tilde{f}) \text{ with } \tilde{f}_P = \begin{cases} f_P - 1 & \text{if } P = P_1 \\ f_P + 1 & \text{if } P = P_2 \\ f_P & \text{otherwise} \end{cases}$$

ГUG)	NETWORK CONGESTION GAMES	JANUARY 2009	5 / 29

Network Congestion Game	Roughgarden
single-commoditiy	multicommodity
unsplittable, unweighted	splittable
makespan	sum

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

THEOREM (ROUGHGARDEN AND TARDOS (2002))

The Nash flows of an instance are precisely the optima of a non-linear convex programming problem. If f and \tilde{f} are Nash flows then $\ell_e(f) = \ell_e(\tilde{f})$ for all $e \in E$. Hence, all Nash equilibria have the same social cost.

THEOREM (ROUGHGARDEN AND TARDOS (2002))

The Nash flows of an instance are precisely the optima of a non-linear convex programming problem. If f and \tilde{f} are Nash flows then $\ell_e(f) = \ell_e(\tilde{f})$ for all $e \in E$. Hence, all Nash equilibria have the same social cost.

Theorem (Fabrikant et al. (2004))

Given a network congestion game the optimal solution of the following min-cost flow problem MCF(G) yields a Nash equilibrium: For every edge $e \in E$ we need N copies with costs $c_{e_i} = \ell_e(i)$, i = 1, ..., N. The capacities of all edges are 1 and we send N units of flow from s to t.

(日)(4回)(4回)(4回)(2)

1

э

4 D F 4 B F

The solution with minimum social cost of 12 is given by

< 17 b

A Nash equilbirum with social cost of 13 is given by

< A >

A Nash equilbirum with social cost of 14 is given by

< A >

Worst Nash Equilibrium (W-NE for short):

- Given: Network congestion game ($G = (V, E), (\ell_e)_{e \in E}$, $s \in V, t \in V, N$ and a number K > 0
- Question: Does there exist a Nash equilibrium f such that $C_{\max}(f) > K?$

Best Nash Equilibrium (B-NE for short):

Given: Network congestion game ($G = (V, E), (\ell_e)_{e \in E}$, $s \in V, t \in V, N$ and a number K > 0Question: Does there exist a Nash equilibrium f such that $C_{\max}(f) < K?$

Unfortunately, it can be shown that in general neither a best nor a worst Nash equilibrium is an optimal solution of MCF(G). ⇒ ≥ ∽<</p>

HATZL (TUG)

NETWORK CONGESTION GAMES

THEOREM (FOTAKIS(2002), GAIRING(2005))

If the users have different weights and the graph G has only parallel links W-NE and B-NE are NP-hard even for linear latency functions.

NASH EQUILIBRIA IN SERIES-PARALLEL GRAPHS

The series composition $G = S(G_1, G_2)$:

LEMMA

Let f_i be a flow in G_i (i = 1, 2). Let $f \in f_1 \otimes f_2$ then f is a Nash equilibrium in $S(G_1, G_2)$ if and only if f_i are Nash equilibria in G_i (i = 1, 2).

NASH EQUILIBRIA IN SERIES-PARALLEL GRAPHS

The parallel composition $G = S(G_1, G_2)$:

LEMMA

Let f_i be a flow in G_i (i = 1, 2). Then $f = f_1 \cup f_2$ is a Nash equilibrium in $P(G_1, G_2)$ if and only if f_i are Nash equilibria in G_i (i = 1, 2) and $C_{\max}(f_2) \leq L_{G_1}^+(f_1)$ and $C_{\max}(f_1) \leq L_{G_2}^+(f_2)$.

→ + 프 → - 프

Worst Nash Equilibrium (W-NE for short):

- Given: Network congestion game $(G = (V, E), (\ell_e)_{e \in E}, s \in V, t \in V, N)$ and a number K > 0
- Question: Does there exist a Nash equilibrium f such that $C_{\max}(f) \ge K$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへで

```
Greedy Best Response (GBR):
For i = 1 to N do
    User i chooses a path with minimal latency
    with respect to load = current flow +1.
end do;
```

```
For i = 1 to N do
User i chooses a path with minimal latency
with respect to load = current flow +1.
end do;
```



```
For i = 1 to N do
User i chooses a path with minimal latency
with respect to load = current flow +1.
end do;
```


current makespan of user 1 = 5

```
For i = 1 to N do
User i chooses a path with minimal latency
with respect to load = current flow +1.
end do;
```


current makespan of user 1 = 5

```
For i = 1 to N do
User i chooses a path with minimal latency
with respect to load = current flow +1.
end do;
```


current makespan of user 1 = 5current makespan of user 2 = 6

```
For i = 1 to N do
User i chooses a path with minimal latency
with respect to load = current flow +1.
end do;
```


current makespan of user 1 = 5current makespan of user 2 = 6

```
For i = 1 to N do
User i chooses a path with minimal latency
with respect to load = current flow +1.
end do;
```


current makespan of user 1 = 6current makespan of user 2 = 6current makespan of user 3 = 8

```
For i = 1 to N do
User i chooses a path with minimal latency
with respect to load = current flow +1.
end do;
```


current makespan of user 1 = 6current makespan of user 2 = 6current makespan of user 3 = 8

The last user yields the maximum makespan!

```
Greedy Best Response (GBR):
```

```
For i = 1 to N do
User i chooses a path with minimal latency
with respect to load = current flow +1
end do;
```

< ∃ >

• □ ▶ • □ ▶ • □ ▶

```
Greedy Best Response (GBR):
```

```
For i = 1 to N do
User i chooses a path with minimal latency
with respect to load = current flow +1
end do;
```

THEOREM (FOTAKIS (2006))

Greedy Best Response yields a Nash equilibrium in series-parallel graphs.

```
Greedy Best Response (GBR):
```

```
For i = 1 to N do
User i chooses a path with minimal latency
with respect to load = current flow +1
end do;
```

THEOREM (FOTAKIS (2006))

Greedy Best Response yields a Nash equilibrium in series-parallel graphs.

THEOREM (GHKSW(2008))

Greedy Best Response yields a worst Nash equilibrium in series-parallel graphs.

THEOREM (GHKSW (2008))

Determining a worst Nash equilibrium is strongly NP-hard even for two users on acyclic networks and with linear latency functions.

Blocking Path Problem:

Given: Digraph G = (V, E) with source $s \in V$ and sink $t \in V$.

Question: Does there exist an *s*-*t*-path $P \in \mathcal{P}$ such that after deleting the edges of *P* there is no path from *s* to *t*?

Blocking Path Problem:

Given: Digraph G = (V, E) with source $s \in V$ and sink $t \in V$.

Question: Does there exist an *s*-*t*-path $P \in \mathcal{P}$ such that after deleting the edges of *P* there is no path from *s* to *t*?

THEOREM (GHKSW (2008))

The Blocking Path Problem is strongly NP-hard even on acyclic networks.

Proof: Reduction from 3SAT.

WORST NASH EQUILIBRIA IN ARBITRARY GRAPHS

Image: A matrix

WORST NASH EQUILIBRIA IN ARBITRARY GRAPHS

construct positive and integral edge lengths a_e such that every path from s to t has the same length L^* .

construct positive and integral edge lengths a_e such that every path from s to t has the same length L^* .

$$\ell_e(x) = egin{cases} \mathsf{a}_e x & ext{if } e \in E \ (L^* + rac{1}{2})(x) & ext{if } e = (s,t) \end{cases}$$

construct positive and integral edge lengths a_e such that every path from s to t has the same length L^* .

$$\ell_e(x) = egin{cases} \mathsf{a}_e x & ext{if } e \in E \ (L^* + rac{1}{2})(x) & ext{if } e = (s,t) \end{cases}$$

 $\begin{array}{ll} \exists \ \ {\rm blocking \ path \ } P^* \\ \Longleftrightarrow \\ \exists \ \ {\rm Nash \ equilibrium \ } f \ \ {\rm for \ two \ users} \\ {\rm with \ } C_{\max}(f) \geq L^* + \frac{1}{2}. \end{array}$

construct positive and integral edge lengths a_e such that every path from s to t has the same length L^* .

$$\ell_e(x) = egin{cases} a_e x & ext{if } e \in E \ (L^* + rac{1}{2})(x) & ext{if } e = (s,t) \end{cases}$$

∃ blocking path P^* \iff Nash equilibrium f for two users with $C_{\max}(f) \ge L^* + \frac{1}{2}$.

Ξ

JANUARY 2009

	series-parallel graph	arbitrary graph
Worst NE	polynomially solvable (Greedy)	strongly NP-hard
Best NE		

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 = ∽ へ ⊙ > ◆○

Best Nash Equilibrium (B-NE for short):

- Given: Network congestion game (G = (V, E), $(\ell_e)_{e \in E}$, $s \in V$, $t \in V$, N) and a number K > 0
- Question: Does there exist a Nash equilibrium f such that $C_{\max}(f) \leq K$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへで

THEOREM (GHKSW (2008))

Determining a best Nash equilibrium is strongly NP-hard even on series-parallel graphs and with linear latency functions if the number of users is part of the input.

Numerical 3-Dimensional Matching:

Given: Disjoint sets X, Y, Z, each containing m elements, a weight w(a) for all elements $a \in X \cup Y \cup Z$ and a bound $B \in \mathbb{Z}^+$. Question: Does there exist a partition of $X \cup Y \cup Z$ into m disjoint sets A_1, \ldots, A_m such that each A_j contains exactly one element from each of X, Y and Z and $\sum_{a \in A_j} w(a) = B$ for all i.

Numerical 3-Dimensional Matching:

Given: Disjoint sets X, Y, Z, each containing m elements, a weight w(a) for all elements $a \in X \cup Y \cup Z$ and a bound $B \in \mathbb{Z}^+$. Question: Does there exist a partition of $X \cup Y \cup Z$ into m disjoint sets A_1, \ldots, A_m such that each A_j contains exactly one element from each of X, Y and Z and $\sum_{a \in A_i} w(a) = B$ for all i.

Assume w.l.o.g. that $w(a) \leq 2w(b)$ and $w(b) \leq 2w(a)$ for all $a, b \in X$ (Y, Z) holds.

Best Nash equilibrium: N is part of input

Hatzl ((\mathbf{T})	U	G))
---------	----------------	---	----	---

NETWORK CONGESTION GAMES

イロト 不得下 不良下 不良下 JANUARY 2009

990

Best Nash equilibrium: N is part of input

∃ numerical 3-dimensional matching \iff ∃ Nash equilibrium f for m users with $C_{\max}(f) \le B$

HATZL (TUG)

NETWORK CONGESTION GAMES

JANUARY 2009

4 E b

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

DQC

THEOREM ([GHKSW (2008)))

Determining a best Nash equilibrium is weakly NP-hard even for two users on series-parallel graphs and with linear latency functions.

Proof: Reduction from Even-Odd Partition Problem.

A dynamic programming algorithm

Let f be a Nash flow, then C(f) denotes the set of latencies of the users with respect to f. C(f) is called cost profile.

A dynamic programming algorithm

Let f be a Nash flow, then C(f) denotes the set of latencies of the users with respect to f. C(f) is called cost profile.

 $S_G(C)$... maximum latency for an additional user in a Nash flow in G with cost profile C.

A dynamic programming algorithm

Let f be a Nash flow, then C(f) denotes the set of latencies of the users with respect to f. C(f) is called cost profile.

 $S_G(C)$... maximum latency for an additional user in a Nash flow in G with cost profile C.

Idea: Find best C such that $S_G(C) < \infty$.

◆□▶ ◆帰▶ ◆三▶ ◆三▶ ─ 三 ─ のへの

BEST NASH EQUILIBRIUM: N IS FIXED

The series composition:

HATZL (TUG)

$$S_G(C) = \max_{C_1 \otimes C_2 \leq C} \{ S_{G_1}(C_1) + S_{G_2}(C_2) \}$$

NETWORK CONGESTION GAMES	JANUARY 2009 26	/ 29
--------------------------	-----------------	------

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Best Nash Equilibrium: N is fixed

The series composition:

$$S_G(C) = \max_{C_1 \otimes C_2 \leq C} \{ S_{G_1}(C_1) + S_{G_2}(C_2) \}$$

The parallel composition:

$$S_{G}(C) = \max_{\substack{C_{1} \cup C_{2} = C \\ C_{1} \leq S_{G_{2}}(C_{2}) \\ C_{1} \leq S_{G_{2}}(C_{2}) \\ C_{1} \leq S_{G_{1}}(C_{1})} \min\{S_{G_{1}}(C_{1}), S_{G_{2}}(C_{2})\}$$

HATZL (TUG)

< 三→ 三三

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

BEST NASH EQUILIBRIUM: N IS FIXED

The series composition:

$$S_G(C) = \max_{C_1 \otimes C_2 \leq C} \{ S_{G_1}(C_1) + S_{G_2}(C_2) \}$$

The parallel composition:

$$S_{G}(C) = \max_{\substack{C_{1} \cup C_{2} = C \\ C_{1} \le S_{G_{2}}(C_{2}) \\ C_{1} \le S_{G_{1}}(C_{1})}} \min\{S_{G_{1}}(C_{1}), S_{G_{2}}(C_{2})\}$$

Solution State Stat

HATZL (TUG)

Best Nash Equilibrium: N is fixed

The series composition:

$$S_G(C) = \max_{C_1 \otimes C_2 \leq C} \{ S_{G_1}(C_1) + S_{G_2}(C_2) \}$$

The parallel composition:

$$S_{G}(C) = \max_{\substack{C_{1} \cup C_{2} = C \\ C_{1} \le S_{G_{2}}(C_{2}) \\ C_{1} \le S_{G_{1}}(C_{1})}} \min\{S_{G_{1}}(C_{1}), S_{G_{2}}(C_{2})\}$$

© There is a huge number multisets C! $\mathcal{O}((|V| \max_{e \in N} \ell_e(N))^N)$ \implies pseudopolynomial-time algorithm for fixed N

© Result is best possible!

	series-parallel graph	arbitrary graph
Worst NE	polynomially solvable (Greedy)	strongly NP-hard
Best NE	strongly NP-hard if <i>N</i> is part of input weakly (!) NP-hard for fixed <i>N</i>	strongly NP-hard if <i>N</i> is part of input weakly (?) NP-hard for fixed <i>N</i>

HATZL (TUG)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 - のへで

- Can we give a bound on the price of anarchy for the network congestion games if the graph is series-parallel?
- What can be said about the price of stability for the network congestion games if the graph is series-parallel?

4 E b

Thank you for your attention!

HATZL (TUG)

NETWORK CONGESTION GAMES

イロト 不得下 不良下 不良下 **JANUARY 2009**

500