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The model

A directed graph G (V ,E ) with multiple edges

A source s and a sink t

Non-decreasing latency functions ℓe : N0 → R
+
0

N users, each routing the same amount of unsplittable flow

Strategy set for all users: P — set of all simple s-t-paths
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The model

A flow is a function f : P → N0 . The latency on a path P ∈ P is the sum
of the latencies on its edges, i.e.,

ℓP(f ) :=
∑

e∈P

ℓe

(

∑

P∈P: e∈P

fP

)

Given a flow f the social cost are given by

Cmax(f ) := max
P∈P:fP>0

ℓP(f ).
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Cmax(f ) = max{1 + 3, 2 + 3, 1.5} = 5
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Nash Equilibrium

Definition (Nash Equilibrium)

A flow f is a Nash equilibrium, iff for all paths P1, P2 with fP1
> 0 we have

ℓP1
(f ) ≤ ℓP2

(f̃ ) with f̃P =











fP − 1 if P = P1

fP + 1 if P = P2

fP otherwise

.
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Roughgarden Model

Network Congestion Game Roughgarden

single-commoditiy multicommodity
unsplittable, unweighted splittable

makespan sum

Hatzl (TUG) Network congestion games January 2009 6 / 29



Existence of Nash equilibria

Hatzl (TUG) Network congestion games January 2009 7 / 29



Existence of Nash equilibria

Theorem (Roughgarden and Tardos (2002))

The Nash flows of an instance are precisely the optima of a non-linear
convex programming problem.
If f and f̃ are Nash flows then ℓe(f ) = ℓe(f̃ ) for all e ∈ E. Hence, all Nash
equilibria have the same social cost.
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Existence of Nash equilibria

Theorem (Roughgarden and Tardos (2002))

The Nash flows of an instance are precisely the optima of a non-linear
convex programming problem.
If f and f̃ are Nash flows then ℓe(f ) = ℓe(f̃ ) for all e ∈ E. Hence, all Nash
equilibria have the same social cost.

Theorem (Fabrikant et al. (2004))

Given a network congestion game the optimal solution of the following
min-cost flow problem MCF(G) yields a Nash equilibrium:
For every edge e ∈ E we need N copies with costs cei

= ℓe(i), i = 1, . . . ,N.
The capacities of all edges are 1 and we send N units of flow from s to t.
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Extreme Nash equilibria

Consider the following instance with N = 2:
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The solution with minimum social cost of 12 is given by
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Extreme Nash equilibria

Worst Nash Equilibrium (W-NE for short):

Given: Network congestion game (G = (V ,E ), (ℓe)e∈E ,
s ∈ V , t ∈ V , N) and a number K > 0

Question: Does there exist a Nash equilibrium f such that
Cmax(f ) ≥ K?

Best Nash Equilibrium (B-NE for short):

Given: Network congestion game (G = (V ,E ), (ℓe)e∈E ,
s ∈ V , t ∈ V , N) and a number K > 0

Question: Does there exist a Nash equilibrium f such that
Cmax(f ) ≤ K?

Unfortunately, it can be shown that in general neither a best nor a worst
Nash equilibrium is an optimal solution of MCF(G ).
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Extreme Nash equilibria

Theorem (Fotakis(2002), Gairing(2005))

If the users have different weights and the graph G has only parallel links
W-NE and B-NE are NP-hard even for linear latency functions.

Hatzl (TUG) Network congestion games January 2009 10 / 29



Nash equilibria in series-parallel graphs

The series composition G = S(G1,G2):

P1 Q1

Q2

Q3

P2

P3

Lemma

Let fi be a flow in Gi (i = 1, 2). Let f ∈ f1 ⊗ f2 then f is a Nash
equilibrium in S(G1,G2) if and only if fi are Nash equilibria in Gi (i = 1, 2).
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Nash equilibria in series-parallel graphs

The parallel composition G = S(G1,G2):

Lemma

Let fi be a flow in Gi (i = 1, 2). Then f = f1 ∪ f2 is a Nash equilibrium in
P(G1,G2) if and only if fi are Nash equilibria in Gi (i = 1, 2) and
Cmax(f2) ≤ L+

G1
(f1) and Cmax(f1) ≤ L+

G2
(f2).
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Worst Nash equilibrium

Worst Nash Equilibrium (W-NE for short):

Given: Network congestion game (G = (V ,E ), (ℓe)e∈E ,
s ∈ V , t ∈ V , N) and a number K > 0

Question: Does there exist a Nash equilibrium f such that
Cmax(f ) ≥ K?
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Worst Nash equilibria in SP-graphs

Greedy Best Response (GBR):
For i = 1 to N do

User i chooses a path with minimal latency

with respect to load = current flow +1.

end do;
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Worst Nash equilibria in SP-graphs

Greedy Best Response (GBR):
For i = 1 to N do

User i chooses a path with minimal latency

with respect to load = current flow +1.

end do;
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6

current makespan of user 1 = 6
current makespan of user 2 = 6
current makespan of user 3 = 8

The last user yields the
maximum makespan!
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Worst Nash equilibria in SP-graphs

Greedy Best Response (GBR):
For i = 1 to N do

User i chooses a path with minimal latency

with respect to load = current flow +1

end do;

Theorem (Fotakis (2006))

Greedy Best Response yields a Nash equilibrium in series-parallel graphs.
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Worst Nash equilibria in SP-graphs

Greedy Best Response (GBR):
For i = 1 to N do

User i chooses a path with minimal latency

with respect to load = current flow +1

end do;

Theorem (Fotakis (2006))

Greedy Best Response yields a Nash equilibrium in series-parallel graphs.

Theorem (GHKSW(2008))

Greedy Best Response yields a worst Nash equilibrium in series-parallel
graphs.
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Worst Nash equilibria in arbitrary graphs

Theorem (GHKSW (2008))

Determining a worst Nash equilibrium is strongly NP-hard even for two
users on acyclic networks and with linear latency functions.
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Worst Nash equilibria in arbitrary graphs

Blocking Path Problem:

Given: Digraph G = (V ,E ) with source s ∈ V and sink t ∈ V .
Question: Does there exist an s-t-path P ∈ P such that after deleting

the edges of P there is no path from s to t?
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Blocking Path Problem:

Given: Digraph G = (V ,E ) with source s ∈ V and sink t ∈ V .
Question: Does there exist an s-t-path P ∈ P such that after deleting

the edges of P there is no path from s to t?

Theorem (GHKSW (2008))

The Blocking Path Problem is strongly NP-hard even on acyclic networks.

Proof: Reduction from 3SAT.
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Worst Nash equilibria in arbitrary graphs

s

t
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Worst Nash equilibria in arbitrary graphs

s

t

construct positive and integral edge
lengths ae such that every path from
s to t has the same length L∗.
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{
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2
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2
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Worst Nash equilibria in arbitrary graphs

s
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Extreme Nash equilibria

series-parallel graph arbitrary graph

Worst NE polynomially solvable (Greedy) strongly NP-hard

Best NE
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Best Nash equilibrium

Best Nash Equilibrium (B-NE for short):

Given: Network congestion game (G = (V ,E ), (ℓe)e∈E ,
s ∈ V , t ∈ V , N) and a number K > 0

Question: Does there exist a Nash equilibrium f such that
Cmax(f ) ≤ K?

Hatzl (TUG) Network congestion games January 2009 20 / 29



Best Nash equilibrium: N is part of input

Theorem (GHKSW (2008))

Determining a best Nash equilibrium is strongly NP-hard even on
series-parallel graphs and with linear latency functions if the number of
users is part of the input.
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Best Nash equilibrium: N is part of input

Numerical 3-Dimensional Matching:

Given: Disjoint sets X ,Y ,Z , each containing m elements, a weight
w(a) for all elements a ∈ X ∪ Y ∪ Z and a bound B ∈ Z

+.
Question: Does there exist a partition of X ∪ Y ∪ Z into m disjoint sets

A1, . . . ,Am such that each Aj contains exactly one element
from each of X , Y and Z and

∑

a∈Ai
w(a) = B for all i .
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Best Nash equilibrium: N is part of input

Numerical 3-Dimensional Matching:

Given: Disjoint sets X ,Y ,Z , each containing m elements, a weight
w(a) for all elements a ∈ X ∪ Y ∪ Z and a bound B ∈ Z

+.
Question: Does there exist a partition of X ∪ Y ∪ Z into m disjoint sets

A1, . . . ,Am such that each Aj contains exactly one element
from each of X , Y and Z and

∑

a∈Ai
w(a) = B for all i .

Assume w.l.o.g. that w(a) ≤ 2w(b) and w(b) ≤ 2w(a) for all a, b ∈ X
(Y ,Z ) holds.
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Best Nash equilibrium: N is part of input

X Y Z

w(a)x
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Best Nash equilibrium: N is part of input

X Y Z

w(a)x

∃ numerical 3-dimensional matching
⇐⇒

∃ Nash equilibrium f for m users with Cmax(f ) ≤ B
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Best Nash equilibrium: N is fixed

Theorem ([GHKSW (2008))

Determining a best Nash equilibrium is weakly NP-hard even for two users
on series-parallel graphs and with linear latency functions.

Proof: Reduction from Even-Odd Partition Problem.
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Best Nash Equilibrium: N is fixed

A dynamic programming algorithm

Let f be a Nash flow, then C (f ) denotes the set of latencies of the users
with respect to f . C (f ) is called cost profile.
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Best Nash Equilibrium: N is fixed

A dynamic programming algorithm

Let f be a Nash flow, then C (f ) denotes the set of latencies of the users
with respect to f . C (f ) is called cost profile.

SG (C ) . . . maximum latency for an additional user
in a Nash flow in G with cost profile C .

Idea: Find best C such that SG (C ) < ∞.
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Best Nash Equilibrium: N is fixed

The series composition:

SG (C ) = max
C1⊗C2≤C

{SG1
(C1) + SG2

(C2)}
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Best Nash Equilibrium: N is fixed

The series composition:

SG (C ) = max
C1⊗C2≤C

{SG1
(C1) + SG2

(C2)}

The parallel composition:

SG (C ) = max
C1∪C2=C

C1≤SG2
(C2)

C1≤SG1
(C1)

min{SG1
(C1),SG2

(C2)}

/ There is a huge number multisets C !
O((|V |maxe∈N ℓe(N))N )
=⇒ pseudopolynomial-time algorithm for fixed N

, Result is best possible!
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Extreme Nash equilibria

series-parallel graph arbitrary graph

Worst NE polynomially solvable (Greedy) strongly NP-hard

Best NE strongly NP-hard strongly NP-hard
if N is part of input if N is part of input

weakly (!) NP-hard weakly (?) NP-hard
for fixed N for fixed N
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Open Questions

Can we give a bound on the price of anarchy for the network
congestion games if the graph is series-parallel?

What can be said about the price of stability for the network
congestion games if the graph is series-parallel?
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The end

Thank you for your attention!
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