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Diameter of a Polyhedron

I Let P be a pointed polyhedron.
I Vertices and edges of P define an

undirected graph.
I diam(P) is the diameter of this graph.
I ∆(d , n) is the maximum diameter of

d-dimensional polyhedra with n facets.
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Diameter Problem

Problem
Find lower and upper bounds for ∆(d , n).

I Hirsch conjecture: ∆b(d , n) ≤ n − d
I true for d ≤ 3 and n − d ≤ 5 (Klee, Walkup 1967)
I true for many special classes of polytopes
I fails for unbounded polyhedra

I n − d + bd/5c ≤ ∆(d , n) (Klee, Walkup 1967)
I ∆(d , n) ≤ n1+log d (Kalai, Kleitman 1992)
I ∆(d , n) ≤ n2d−3 (Larman 1970)

I Large gap between linear and superpolynomial.
I No progress in > 15 years – why?
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Recipe for Abstractions

Lemma
∆(d , n) is achieved by a simple polyhedron.
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Recipe for Abstractions

Lemma
∆(d , n) is achieved by a simple polyhedron.

145 124

135 123

456 246

356 236
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Base Abstraction

Our base abstraction is a graph G = (V , E) with V ⊆
([n]

d

)
such

that
I every pair u, v ∈ V is connected by a path in G whose

vertices all contain u ∩ v .

Dictionary
The elements of [n] are called symbols, d is the dimension.

base abstraction polyhedron
symbol facet

set of symbols face
set of d symbols vertex

D(d , n) ∆(d , n)
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Brief History Lesson

I Kalai (1992) mentions an abstraction with the additional
property

(u, v) ∈ E ⇐⇒ |u ∩ v | = d − 1

I Adler, Dantzig (1974) studied an abstraction that in
addition satisfies:

I Every set of d − 1 symbols appears either in two vertices or
in no vertex.
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Our Results

I The best known general upper bound proofs translate to
the base abstraction:

I D(d , n) ≤ n1+log d

I D(d , n) ≤ n2d−1

I There is a superlinear lower bound:
I D(d , n) = Ω(n3/2) when d = Θ(

√
n).
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Connected Layer Families

I Partition V into layers L1, . . . ,L` such that
I every set of symbols that is covered on layers i and j , i < j ,

is also covered on each layer in between.
I Such a partition is a connected layer family, ` is its height.
I Can partition an instance of the base abstraction using

distance labels sucht that ` = diam(G) + 1:

145 124

135 123

456 246

356 236
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Equivalence

I We have seen: Every base abstraction yields a connected
layer family.

I Now: Every connected layer family yields an instance of
the base abstraction.

145

124 135

123

456

246 356

236

I We will construct a connected layer family of large height.
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Coverings

A simple example
Cover all points by as few 3-element sets as possible.
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Coverings

A simple example
Cover all 2-element sets by as few 3-element sets as possible.
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Coverings

I An (n, k , r)-covering of a set X of n elements is a collection
of k -subsets of X that covers each r -subset of X at least
once.

I C(n, k , r) is the size of a smallest (n, k , r)-covering.

Lower bound
Every k -subset covers only

(k
r

)
many r -subsets

=⇒ C(n, k , r) ≥
(n

r

)
/
(k

r

)
Theorem (Rödl 1985)
C(n,k ,r)
(n

r)/(k
r )
→ 1 for fixed k, r .
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Families of Disjoint Coverings

I DC(n, k , r) is the size of a largest family of pairwise disjoint
(n, k , r)-coverings.

Example of Disjoint (9, 3, 1)-Coverings

Note: DC(n, r + 1, r) ≤ n − r
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Families of Disjoint Coverings

I DC(n, k , r) is the size of a largest family of pairwise disjoint
(n, k , r)-coverings.

Upper bound
Every r -subset is contained in

(n−r
k−r

)
many k -subsets.

Each covering in a family of disjoint coverings must contain one
of those k -subsets.
=⇒ DC(n, k , r) ≤

(n−r
k−r

)

Theorem
DC(n, r + 1, r) ≥ n − r(r + 2)

Note: DC(n, r + 1, r) ≤ n − r
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Disjoint (n, r + 1, r)-Coverings

Theorem
DC(n, r + 1, r) ≥ n − r(r + 2)

Proof.
I Use integers modulo n as set X .
I Create preliminary collections of (r + 1)-element sets.

Cj = {A ⊂ X | |A| = r + 1,
∑
a∈A

a = j} for j = 0 . . . n − 1

I Every r -set is covered in exactly n − r of the Cj .
I Use the Marriage Theorem to fill “holes” in n − r(r + 2) of

the Cj , picking one r(r + 2)-set from the other r(r + 2)
collections for each “hole”.
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First Attempt: Disjoint Coverings

I Recall: DC(n, r + 1, r) ≥ n − r(r + 2)

I Take a family of disjoint
(n, d , d − 1)-coverings
L1, . . . ,Ln−(d−1)(d+1).

I This is a connected layer family of height
n − d2 + 1.

I No improved lower bound yet.

DCs of [n]
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Second Attempt with Split Set of Symbol

I Instead of [n], use two disjoint sets of
symbols S1 and S2, |S1| = |S2| = m.

I Take separate families of disjoint
(m, d , d − 1)-coverings and concatenate
them.

I Get a connected layer family of height
2(m − d2 + 1).

I Height is slightly less than before, but now
there are many unused potential vertices.

DCs of S1

DCs of S2
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Mixing Sets of Symbols

I Add intermediate blocks for all i , j > 0 with
i + j = d as follows:

I Disjoint (m, i , i − 1)-coverings A0, . . . Ak−1
of S1

I Disjoint (m, j , j − 1)-coverings B0, . . . Bk−1
of S2

I Form the q-th layer by combining sets
from Aa with sets from Bb whenever
a + b = q mod k .

I Height is now (d + 1)(m − d2 + 1).
I Almost dn/2, where n is the number of

symbols.

DCs of S1

i = d − 1, j = 1

i = d − 2, j = 2

i = 1, j = d − 1

DCs of S2
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Further Subdivision of the Set of Symbols

I Use k sets of symbols S1, . . . , Sk .
I Height is ≥ dkm − kd3 − dm.

DCs of S1

i = d − 1, j = 1

DCs of S2

DCs of S3

DCs of Sk
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Main Result and Open Problems

Theorem
Letting d grow as a function of n, D(d , n) = Ω(n3/2).

Open Problems

I What geometric properties of polyhedra can be used to get
better bounds on ∆(d , n)?

I Is D(d , n) ≤ dn?
I Find good lower bounds for DC(n, k , r) when k > r + 1.
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Fin

Thank you for your attention!
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