MEP123: MASTER EQUALITY POLYHEDRON WITH ONE, TWO OR THREE ROWS

Oktay Günlük

Mathematical Sciences Department IBM Research

January, 2009

joint work with Sanjeeb Dash and Ricardo Fukasawa

1/17

MASTER EQUALITY POLYHEDRON

Let
$$n, r \in \mathbb{Z}$$
 and $n \ge r > 0$.
MEP
 $K^1(n, r) = conv \left\{ x \in \mathbb{Z}^{2n+1}_+ : \sum_{i=-n}^n ix_i = r \right\}$

- ▶ $K^1(n,r)$ was first defined by Uchoa, Fukasawa, Lysgaard, Pessoa, Poggi de Aragão and Andrade ('06) in a slightly different form.
- Using simple cuts based on $K^1(n, r)$, they reduce the integrality gap for capacitated MST instances by more than 50% on average.

MASTER EQUALITY POLYHEDRON

Let
$$n, r \in \mathbb{Z}$$
 and $n \ge r > 0$.
MEP
 $K^1(n, r) = conv \left\{ x \in \mathbb{Z}^{2n+1}_+ : \sum_{i=-n}^n ix_i = r \right\}$

GOMORY'S MCGP
$$P^{1}(n,r) = conv \left\{ x \in \mathbb{Z}_{+}^{n} : -nx_{-n} + \sum_{i=1}^{n-1} ix_{i} = r \right\}$$

Observation: MCGP is a lower dimensional face of MEP.

Gomory's Master Cyclic Group Polyhedron

$$P^{1}(n,r) = conv \left\{ x \in \mathbb{Z}_{+}^{n} : -nx_{-n} + \sum_{i \in I^{G}} ix_{i} = r \right\}$$

where
$$I^G = [1, n-1] \equiv \{1, \dots, n-1\}.$$

THEOREM (GOMORY)

 $\sum_{i \in I^G} \pi_i x_i \ge 1$ is a nontrivial facet defining inequality of $P^1(n,r)$ if and only if π is an extreme point of the following **polytope**:

$$Q = \begin{cases} \pi_i + \pi_k \geq \pi_{(i+k) \mod n} & \forall i, k \in I^G, \\ \pi_i + \pi_k = \pi_r & \forall i, k \in I^G, r = (i+k) \mod n, \\ \pi_k \geq 0 & \forall k \in I^G, \\ \pi_r = 1. \end{cases}$$

A "POLAR" DESCRIPTION OF MEP

THEOREM (DFG)

 $\sum_{i \in I} \pi_i x_i \ge 1$ is a nontrivial facet of $K^1(n,r)$ if and only if π is an extreme point of the following **polyhedron**:

 $T = \begin{cases} \pi_i + \pi_j & \geq \pi_{i+j}, & \forall i, j \in I, \quad i+j \in I^+ \\ \pi_i + \pi_j + \pi_k & \geq \pi_{i+j+k}, & \forall i \in I, \quad j, k, i+j+k \in I^+ \\ \pi_i + \pi_j & = \pi_r, & \forall i, j \in I, \quad i+j=r \\ \pi_r & = 1, \\ \pi_0 & = 0, \\ \pi_{-n} & = 0, \end{cases}$

where I = [-n, n] and $I^+ = [0, n]$.

- ► T and Q are not polars as they exclude trivial inequalities $x \ge 0$. (they also impose "complementarity" conditions $\pi_i + \pi_j = \pi_r$ for all i + j = r)
- ▶ Their extreme points give all nontrivial facets.
 - ► *Q* gives the convex hull of nontrivial facet coefficients (for MCGP)
 - T gives the convex hull *plus* some directions (for MEP).
- ▶ They can be used for efficient separation via linear programming.
- ▶ Not all facets of MEP can be obtained by lifting facets of MCGP.

- ► T and Q are not polars as they exclude trivial inequalities $x \ge 0$. (they also impose "complementarity" conditions $\pi_i + \pi_j = \pi_r$ for all i + j = r)
- ▶ Their extreme points give all nontrivial facets.
 - ► Q gives the convex hull of nontrivial facet coefficients (for MCGP)
 - T gives the convex hull *plus* some directions (for MEP).
- ▶ They can be used for efficient separation via linear programming.
- ▶ Not all facets of MEP can be obtained by lifting facets of MCGP.

- ► T and Q are not polars as they exclude trivial inequalities $x \ge 0$. (they also impose "complementarity" conditions $\pi_i + \pi_j = \pi_r$ for all i + j = r)
- ▶ Their extreme points give all nontrivial facets.
 - ► Q gives the convex hull of nontrivial facet coefficients (for MCGP)
 - T gives the convex hull *plus* some directions (for MEP).
- ▶ They can be used for efficient separation via linear programming.
- ▶ Not all facets of MEP can be obtained by lifting facets of MCGP.

REGULAR SUBADDITIVITY

 $\pi_i + \pi_j \ge \pi_{i+j} \qquad \forall i, j, i+j \in I = [-n, n]$

Relaxed subadditivity

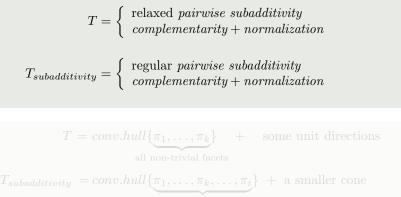
$$\pi_i + \pi_j \ge \pi_{i+j}, \qquad \forall i, j \in I, \qquad i+j \in I^+ = [0, n]$$

$$\pi_i + \pi_j + \pi_k \ge \pi_{i+j+k}, \quad \forall i, j, k \in I, \quad i+j+k \in I^+$$

- Regular subadditivity \Rightarrow relaxed subadditivity
- ▶ All nontrivial facets satisfy regular subadditivity.
- If π satisfies either condition, then $\pi x \ge \pi_r$ is valid for $K^1(n, r)$.
- ▶ Subadditivity constraints introduce additional extreme points.

Regular subadditivity \Rightarrow relaxed subadditivity:

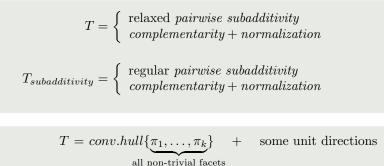
 $T_{subadditivity} \subseteq T$



all non-trivial facets and more

Regular subadditivity \Rightarrow relaxed subadditivity:

 $T_{subadditivity} \subseteq T$



$$T_{subadditivity} = conv.hull\{\underline{\pi_1, \dots, \pi_k, \dots, \pi_t}\} + \text{ a smaller cone}$$

all non-trivial facets and more

MULTIPLE ROWS

Let
$$n \in \mathbb{Z}_+, r \in \mathbb{Z}_+^m, r \neq 0$$
 and $r \leq n\mathbf{1}$

MEP

$$K^{m}(n,r) = conv \left\{ x \in \mathbb{Z}_{+}^{|I|} : \sum_{i \in I} ix_{i} = r \right\}$$

where $I = [-n, n]^m$.

MCGP

$$P^{m}(n,r) = conv \left\{ x \in \mathbb{Z}_{+}^{|I^{+}|} : \sum_{i \in I^{+}} ix_{i} = r \pmod{\mathbf{n}} \right\}$$

where $I^G = [0, n-1]^m \setminus \{\mathbf{0}\}.$

MCGP WITH MULTIPLE ROWS

$$P^{m}(n,r) = conv \left\{ x \in \mathbb{Z}_{+}^{|I^{G}|} : \sum_{i \in I^{G}} ix_{i} = r \pmod{\mathbf{n}} \right\}$$

where $I^G = [0, n-1]^m \setminus \{\mathbf{0}\}$

THEOREM (GOMORY)

 $\pi x \geq 1$ is a nontrivial facet defining inequality of $P^m(n,r)$ if and only if π is an extreme point of the following polytope:

$$Q^m = \begin{cases} \begin{array}{ll} \pi_i + \pi_k & \geq & \pi_{(i+k)} \mod n & \forall i, k \in I^G, \\ \pi_i + \pi_k & = & \pi_r & \forall i, k \in I^G, r = (i+k) \mod \mathbf{n}, \\ \pi_k & \geq & 0 & \forall k \in I^G \\ \pi_r & = & 1. \end{array}$$

MEP WITH MULTIPLE ROWS

$$K^{m}(n,r) = conv \left\{ x \in \mathbb{Z}_{+}^{|I|} : \sum_{i \in I} ix_{i} = r \right\}$$

where $I = [-n, n]^m$ and let $I^+ = [0, n]^m \setminus \{\mathbf{0}\}$

NORMALIZATION

As the dimension of $K^m(n,r)$ is |I| - m, any inequality $\pi x \ge \beta$ can be normalized so that $\pi_i = 0$ for all $i \in I_N$, where

$$I_N = \left\{ \begin{bmatrix} -n \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -n \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ \vdots \\ -n \end{bmatrix} \right\}$$

THEOREM

After normalization all non-trivial facets can be written as $\pi x \geq 1$.

MEP WITH MULTIPLE ROWS

$$K^{m}(n,r) = conv \left\{ x \in \mathbb{Z}_{+}^{|I|} : \sum_{i \in I} ix_{i} = r \right\}$$

where $I = [-n, n]^m$ and let $I^+ = [0, n]^m \setminus \{\mathbf{0}\}$

THEOREM

Generalizing the "non-trivial polar" T^1 for $K^1(n, r)$

$$T^{m} = \begin{cases} \sum_{i \in S} \pi_{i} \geq \pi_{S}, & \forall S \in \mathcal{S} \\ \pi_{i} + \pi_{j} = \pi_{r}, & \forall i, j \in I, \ i + j = r \\ \pi_{0} = 0, \ \pi_{r} = 1, & \pi_{i} = 0, \ \forall i \in I_{N} \end{cases}$$

requires large S (some |S| = O(n)) if all $S \in S$ satisfy $\sum_{i \in S} i \in I^+$.

For MCGP, all |S| = 2; for MEP, all $|S| \le 3$.

SEPARATION VIA NONTRIVIAL POLARS

DEFINITION

A polaroid T of $K^m(n,r)$ is a polyhedral set such that:

- 1. All $\pi \in T$, satisfy the normalization conditions
- 2. If $\pi \in T$ then $\pi x \ge 1$ is valid for all $x \in K^m(n, r)$
- 3. If $\pi x \ge 1$ is facet-defining for $K^m(n,r)$, then $\pi \in T$.

SEPARATION VIA NONTRIVIAL POLARS

DEFINITION

A polaroid T of $K^m(n,r)$ is a polyhedral set such that:

- 1. All $\pi \in T$, satisfy the normalization conditions
- 2. If $\pi \in T$ then $\pi x \ge 1$ is valid for all $x \in K^m(n, r)$
- 3. If $\pi x \ge 1$ is facet-defining for $K^m(n,r)$, then $\pi \in T$.

Nontrivial Polar

▶ Polaroid \subseteq Nontrivial Polar where

Nontrivial Polar = { $\pi \in \mathbb{R}^{|I|}$: $\pi x \ge 1$ for all $x \in K^m(n, r)$ }

Nontrivial Polar =
$$conv.hull\{ \pi_1, \dots, \pi_k \}$$
 +
a cone
all non-trivial facets + unit directions
Polaroid = $conv.hull\{ \pi_1, \dots, \pi_k, \dots, \pi_t \}$ + a smaller cone
all non-trivial facets and more

11/17

SEPARATION VIA NONTRIVIAL POLARS

DEFINITION

A polaroid T of $K^m(n,r)$ is a polyhedral set such that:

- 1. All $\pi \in T$, satisfy the normalization conditions
- 2. If $\pi \in T$ then $\pi x \ge 1$ is valid for all $x \in K^m(n, r)$
- 3. If $\pi x \ge 1$ is facet-defining for $K^m(n,r)$, then $\pi \in T$.

Let P denote the continuous relaxation of $K^m(n,r)$.

THEOREM

Given a point $x^* \in P$, and a polaroid T of $K^m(n,r)$. Then

- 1. $x^* \in K^m(n,r)$ can be checked by solving an LP over T, and,
- 2. if $x^* \notin K^m(n,r)$ then a violated facet-defining inequality can be obtained by solving a second LP over T.

 $K^m(n,r)$ with m=1,2

$$T^{1} \text{ IS A POLAROID FOR } K^{1}(n, r)$$

$$T^{1} = \begin{cases} \pi_{i} + \pi_{j} \geq \pi_{i+j}, \quad \forall i, j, i+j \in I \\ \pi_{i} + \pi_{j} = \pi_{r}, \quad \forall i, j \in I, \ i+j = r \\ \pi_{0} = 0, \ \pi_{r} = 1, \qquad \pi_{-n} = 0 \end{cases}$$
where $I = [-n, n]$

$$T^{2} \text{ IS A POLAROID FOR } K^{2}(n, r)$$

$$T^{2} = \begin{cases} \pi_{i} + \pi_{j} \geq \pi_{i+j}, & \forall i, j, i+j \in I \\ \pi_{i} + \pi_{j} = \pi_{r}, & \forall i, j \in I, i+j = r \\ \pi_{0} = 0, \ \pi_{r} = 1, & \pi_{\begin{bmatrix} -n \\ 0 \end{bmatrix}} = \pi_{\begin{bmatrix} -n \\ -n \end{bmatrix}}^{2} = 0$$
where $I = \begin{bmatrix} -n, n \end{bmatrix}^{2}$

 $K^m(n,r)$ with m=1,2

$$T^{1} \text{ IS A POLAROID FOR } K^{1}(n, r)$$

$$T^{1} = \begin{cases} \pi_{i} + \pi_{j} \geq \pi_{i+j}, & \forall i, j, i+j \in I \\ \pi_{i} + \pi_{j} = \pi_{r}, & \forall i, j \in I, i+j = r \\ \pi_{0} = 0, \ \pi_{r} = 1, & \pi_{-n} = 0 \end{cases}$$
where $I = [-n, n]$

$$\begin{split} T^2 \text{ IS A POLAROID FOR } K^2(n,r) \\ T^2 = \begin{cases} \pi_i + \pi_j &\geq \pi_{i+j}, & \forall i,j,i+j \in I \\ \pi_i + \pi_j &= \pi_r, & \forall i,j \in I, \ i+j=r \\ \pi_0 = 0, \ \pi_r &= 1, & \pi_{\begin{bmatrix} -n \\ 0 \end{bmatrix}} = \pi_{\begin{bmatrix} 0 \\ -n \end{bmatrix}} = 0 \end{split}$$
 where $I = [-n,n]^2$

 $K^m(n,r)$ with m=3

$$\begin{split} T_a^3 \text{ IS NOT A POLAROID FOR } K^3(n,r) \\ T_a^3 = \begin{cases} \pi_i + \pi_j &\geq \pi_{i+j}, \quad \forall i,j,i+j \in I \\ \pi_i + \pi_j &= \pi_r, \quad \forall i,j \in I, \ i+j=r \\ \pi_0 = 0, \ \pi_r &= 1, \qquad \pi_{\begin{bmatrix} -n \\ 0 \end{bmatrix}}^{-n} = \pi_{\begin{bmatrix} 0 \\ -n \end{bmatrix}}^{-n} = 0 \\ \text{where } I = [-n,n]^3 \end{split}$$

T_b^3 is **NOT** A polaroid for $K^3(n,r)$

$$T_b^3 = \begin{cases} \pi_i + \pi_j + \pi_k \geq \pi_{i+j+k}, & \forall i, j, k, i+j+k \in I \\ \pi_i + \pi_j = \pi_r, & \forall i, j \in I, \ i+j=r \\ \pi_0 = 0, \ \pi_r = 1, & \pi_{\begin{bmatrix} -n \\ 0 \end{bmatrix}}^{-n} = \pi_{\begin{bmatrix} 0 \\ -n \end{bmatrix}} = 0 \end{cases}$$

 $K^m(n,r)$ with m=3

$$\begin{split} T_a^3 \text{ IS NOT A POLAROID FOR } K^3(n,r) \\ T_a^3 = \begin{cases} \pi_i + \pi_j \geq \pi_{i+j}, & \forall i,j,i+j \in I \\ \pi_i + \pi_j = \pi_r, & \forall i,j \in I, i+j=r \\ \pi_0 = 0, \ \pi_r = 1, & \pi_{\begin{bmatrix} -n \\ 0 \end{bmatrix}}^{\begin{bmatrix} -n \\ 0 \end{bmatrix}} = \pi_{\begin{bmatrix} 0 \\ -n \end{bmatrix}}^0 = 0 \\ \text{where } I = [-n,n]^3 \end{split}$$

T_b^3 is **NOT** a polaroid for $K^3(n,r)$

$$T_b^3 = \begin{cases} \pi_i + \pi_j + \pi_k \geq \pi_{i+j+k}, & \forall i, j, k, i+j+k \in I \\ \pi_i + \pi_j = \pi_r, & \forall i, j \in I, \ i+j=r \\ \pi_0 = 0, \ \pi_r = 1, & \pi_{\begin{bmatrix} -n \\ 0 \\ 0 \end{bmatrix}} = \pi_{\begin{bmatrix} 0 \\ -n \end{bmatrix}} = \pi_{\begin{bmatrix} 0 \\ -n \end{bmatrix}} = 0 \end{cases}$$

EXAMPLE

 $K^{3}(10, \mathbf{2})$

 \blacktriangleright Let

$$a = \begin{bmatrix} 10\\ -10\\ 10 \end{bmatrix} \quad b = \begin{bmatrix} -10\\ 10\\ 10 \end{bmatrix} \quad c = \begin{bmatrix} 1\\ 1\\ -9 \end{bmatrix}$$

and consider the point \bar{x} and the inequality $\bar{\pi}x \geq 1$ where

•
$$\bar{x}_a = \bar{x}_b = 1$$
, $\bar{x}_c = 2$ and all other $\bar{x}_i = 0$

• $\pi_a = \pi_b = \pi_c = 0$ and all other $\pi_i = 1$ (including π_r)

▶ Note that, $\sum_{i \in I} i \cdot x_i = a + b + 2c = 2$ and $\bar{x} \in K^3(10, 2)$.

▶ Also, $\bar{\pi}$ satisfies all 2 and 3-term subadditivity conditions:

•
$$\pi_i + \pi_j \ge \pi_{i+j}$$
 for all $i, j, i+j \in I$,

• $\pi_i + \pi_j + \pi_k \ge \pi_{i+j+k}$ for all $i, j, k, i+j+k \in I$,

• And yet, $\bar{\pi}\bar{x} = 0 \geq 1!$

IN GENERAL

Consider $K^m(n,r)$ and let $I = [-n,n]^m$.

K-TERM SUBADDITIVITY

We say that $\pi \in \mathbb{R}^{|I|}$ satisfies k-term subadditivity if

$$\sum_{i \in S} \pi_i \geq \pi_S$$

for all $S \subseteq I$ such that (i) $|S| \le k$ and (ii) $\sum_{i \in S} i \in I$

VALIDITY VIA SUBADDITIVITY

It is possible to construct invalid cuts $\pi x \ge 1$ for $K^m(n, r)$ where π satisfies the normalization conditions and k-subadditivity unless

 $k \ge \max\{2, \ 3 \cdot 2^{m-3} + 1\}$

(for $m \ge 1$, the lower bound is: 2, 2, 4, 7, 13, 25, ...)

IN GENERAL

Consider $K^m(n,r)$ and let $I = [-n,n]^m$.

K-TERM SUBADDITIVITY

We say that $\pi \in \mathbb{R}^{|I|}$ satisfies k-term subadditivity if

$$\sum_{i \in S} \pi_i \geq \pi_S$$

for all $S \subseteq I$ such that (i) $|S| \le k$ and (ii) $\sum_{i \in S} i \in I$

VALIDITY VIA SUBADDITIVITY

It is possible to construct invalid cuts $\pi x \ge 1$ for $K^m(n, r)$ where π satisfies the normalization conditions and k-subadditivity unless

$$k \ge \max\{2, \ 3 \cdot 2^{m-3} + 1\}$$

(for $m \ge 1$, the lower bound is: 2, 2, 4, 7, 13, 25, ...)

$$K^3(n,r)$$

Theorem

If π satisfies 4-term subadditivity, then $\pi x \geq 1$ is valid for $K^3(n,r)$.

$$T^{3} \text{ IS A POLAROID FOR } K^{3}(n, r)$$

$$T^{3} = \begin{cases} \pi_{i} + \pi_{j} + \pi_{k} + \pi_{l} \geq \pi_{i+j+k+l}, & \forall i, j, k, l, i+j+k+l \in I \\ \pi_{i} + \pi_{j} = \pi_{r}, & \forall i, j \in I, i+j=r \\ \pi_{0} = 0, \pi_{r} = 1, & \pi_{\begin{bmatrix} -n \\ 0 \end{bmatrix}} = \pi_{\begin{bmatrix} -n \\ -n \end{bmatrix}} = 0$$
where $I = [-n, n]^{3}$

$$K^3(n,r)$$

Theorem

If π satisfies 4-term subadditivity, then $\pi x \geq 1$ is valid for $K^3(n,r)$.

$$\begin{split} T^3 \text{ IS A POLAROID FOR } K^3(n,r) \\ T^3 = \begin{cases} \pi_i + \pi_j + \pi_k + \pi_l &\geq \pi_{i+j+k+l}, &\forall i,j,k,l,i+j+k+l \in I \\ \pi_i + \pi_j &= \pi_r, &\forall i,j \in I, \ i+j=r \\ \pi_0 = 0, \ \pi_r &= 1, & \pi_{\begin{bmatrix} -n \\ 0 \\ 0 \end{bmatrix}}^{-n} = \pi_{\begin{bmatrix} 0 \\ -n \end{bmatrix}} = \pi_{\begin{bmatrix} 0 \\ -n \end{bmatrix}} = 0 \\ \text{where } I = [-n,n]^3 \end{split}$$

THANK YOU...

17/17