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Master Equality polyhedron

Let n, r ∈ Z and n ≥ r > 0.

MEP

K1(n, r) = conv
{
x ∈ Z2n+1

+ :
n∑

i=−n

ixi = r
}

I K1(n, r) was first defined by Uchoa, Fukasawa, Lysgaard, Pessoa,
Poggi de Aragão and Andrade (’06) in a slightly different form.

I Using simple cuts based on K1(n, r), they reduce the integrality
gap for capacitated MST instances by more than 50% on average.
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Master Equality polyhedron

Let n, r ∈ Z and n ≥ r > 0.

MEP

K1(n, r) = conv
{
x ∈ Z2n+1

+ :
n∑

i=−n

ixi = r
}

Gomory’s MCGP

P 1(n, r) = conv
{
x ∈ Zn

+ : −nx−n +
n−1∑
i=1

ixi = r
}

Observation: MCGP is a lower dimensional face of MEP.
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Gomory’s Master Cyclic Group Polyhedron

P 1(n, r) = conv
{
x ∈ Zn

+ : −nx−n +
∑
i∈IG

ixi = r
}

where IG = [1, n− 1] ≡ {1, . . . , n− 1}.

Theorem (Gomory)∑
i∈IG πixi ≥ 1 is a nontrivial facet defining inequality of P 1(n, r) if

and only if π is an extreme point of the following polytope:

Q =


πi + πk ≥ π

(i+k) mod n
∀i, k ∈ IG,

πi + πk = πr ∀i, k ∈ IG, r = (i+ k) modn,
πk ≥ 0 ∀k ∈ IG,
πr = 1.
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A “Polar” description of MEP

Theorem (DFG)∑
i∈I πixi ≥ 1 is a nontrivial facet of K1(n, r) if and only if π is an

extreme point of the following polyhedron:

T =



πi + πj ≥ πi+j , ∀i, j ∈ I, i+ j ∈ I+

πi + πj + πk ≥ πi+j+k, ∀i ∈ I, j, k, i+ j + k ∈ I+

πi + πj = πr, ∀i, j ∈ I, i+ j = r

πr = 1,
π0 = 0,
π−n = 0,

where I = [−n, n] and I+ = [0, n].
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Some observations

I T and Q are not polars as they exclude trivial inequalities x ≥ 0.
(they also impose ”complementarity” conditions πi + πj = πr for
all i+ j = r)

I Their extreme points give all nontrivial facets.
I Q gives the convex hull of nontrivial facet coefficients (for MCGP)

I T gives the convex hull plus some directions (for MEP).

I They can be used for efficient separation via linear programming.

I Not all facets of MEP can be obtained by lifting facets of MCGP.
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Pairwise subadditivity

Regular subadditivity

πi + πj ≥ πi+j ∀i, j, i+ j ∈ I = [−n, n]

Relaxed subadditivity

πi + πj ≥ πi+j , ∀i, j ∈ I, i+ j ∈ I+ = [0, n]

πi + πj + πk ≥ πi+j+k, ∀i, j, k ∈ I, i+ j + k ∈ I+

I Regular subadditivity ⇒ relaxed subadditivity
I All nontrivial facets satisfy regular subadditivity.
I If π satisfies either condition, then πx ≥ πr is valid for K1(n, r).
I Subadditivity constraints introduce additional extreme points.
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Pairwise subadditivity

Regular subadditivity ⇒ relaxed subadditivity:

Tsubadditivity ⊆ T

T =
{

relaxed pairwise subadditivity
complementarity + normalization

Tsubadditivity =
{

regular pairwise subadditivity
complementarity + normalization

T = conv.hull{π1, . . . , πk︸ ︷︷ ︸
all non-trivial facets

} + some unit directions

Tsubadditivity = conv.hull{π1, . . . , πk, . . . , πt︸ ︷︷ ︸
all non-trivial facets and more

} + a smaller cone
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Multiple rows

Let n ∈ Z+, r ∈ Zm
+ , r 6= 0 and r ≤ n1

MEP

Km(n, r) = conv
{
x ∈ Z|I|+ :

∑
i∈I

ixi = r
}

where I = [−n, n]m.

MCGP

Pm(n, r) = conv
{
x ∈ Z|I

+|
+ :

∑
i∈I+

ixi = r (mod n)
}

where IG = [0, n− 1]m \ {0}.
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MCGP with multiple rows

Pm(n, r) = conv
{
x ∈ Z|I

G|
+ :

∑
i∈IG

ixi = r (mod n)
}

where IG = [0, n− 1]m \ {0}

Theorem (Gomory)

πx ≥ 1 is a nontrivial facet defining inequality of Pm(n, r) if and only
if π is an extreme point of the following polytope:

Qm =


πi + πk ≥ π

(i+k) mod n
∀i, k ∈ IG,

πi + πk = πr ∀i, k ∈ IG, r = (i+ k) mod n,
πk ≥ 0 ∀k ∈ IG

πr = 1.

9/17



MEP with multiple rows

Km(n, r) = conv
{
x ∈ Z|I|+ :

∑
i∈I

ixi = r
}

where I = [−n, n]m and let I+ = [0, n]m \ {0}

Normalization

As the dimension of Km(n, r) is |I| −m, any inequality πx ≥ β can
be normalized so that πi = 0 for all i ∈ IN , where

IN =


−n

0

.

.

.
0

 ,
 0
−n

.

.

.
0

 , . . . ,
 0

0

.

.

.
−n


Theorem
After normalization all non-trivial facets can be written as πx ≥ 1.
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MEP with multiple rows

Km(n, r) = conv
{
x ∈ Z|I|+ :

∑
i∈I

ixi = r
}

where I = [−n, n]m and let I+ = [0, n]m \ {0}

Theorem

Generalizing the ”non-trivial polar” T 1 for K1(n, r)

Tm =


∑

i∈S πi ≥ πS , ∀S ∈ S
πi + πj = πr, ∀i, j ∈ I, i+ j = r

π0 = 0, πr = 1, πi = 0, ∀i ∈ IN

requires large S (some |S| = O(n)) if all S ∈ S satisfy
∑

i∈S i ∈ I+.

I For MCGP, all |S| = 2; for MEP, all |S| ≤ 3.
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Separation via nontrivial polars

Definition

A polaroid T of Km(n, r) is a polyhedral set such that:

1. All π ∈ T , satisfy the normalization conditions

2. If π ∈ T then πx ≥ 1 is valid for all x ∈ Km(n, r)

3. If πx ≥ 1 is facet-defining for Km(n, r), then π ∈ T .
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Separation via nontrivial polars

Definition

A polaroid T of Km(n, r) is a polyhedral set such that:

1. All π ∈ T , satisfy the normalization conditions

2. If π ∈ T then πx ≥ 1 is valid for all x ∈ Km(n, r)

3. If πx ≥ 1 is facet-defining for Km(n, r), then π ∈ T .

Let P denote the continuous relaxation of Km(n, r).

Theorem

Given a point x∗ ∈ P , and a polaroid T of Km(n, r). Then
1. x∗ ∈ Km(n, r) can be checked by solving an LP over T , and,

2. if x∗ 6∈ Km(n, r) then a violated facet-defining inequality can be
obtained by solving a second LP over T .
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Km(n, r) with m = 1, 2

T 1 is a polaroid for K1(n, r)

T 1 =


πi + πj ≥ πi+j , ∀i, j, i+ j ∈ I
πi + πj = πr, ∀i, j ∈ I, i+ j = r

π0 = 0, πr = 1, π−n = 0

where I = [−n, n]

T 2 is a polaroid for K2(n, r)

T 2 =


πi + πj ≥ πi+j , ∀i, j, i+ j ∈ I
πi + πj = πr, ∀i, j ∈ I, i+ j = r

π0 = 0, πr = 1, π[−n
0

] = π[ 0
−n

] = 0

where I = [−n, n]2
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Km(n, r) with m = 3

T 3
a is NOT a polaroid for K3(n, r)

T 3
a =


πi + πj ≥ πi+j , ∀i, j, i+ j ∈ I
πi + πj = πr, ∀i, j ∈ I, i+ j = r

π0 = 0, πr = 1, π[−n
0
0

] = π[ 0
−n

0

] = π[ 0
0

−n

] = 0

where I = [−n, n]3

T 3
b is NOT a polaroid for K3(n, r)

T 3
b =


πi + πj + πk ≥ πi+j+k, ∀i, j, k, i+ j + k ∈ I

πi + πj = πr, ∀i, j ∈ I, i+ j = r

π0 = 0, πr = 1, π[−n
0
0

] = π[ 0
−n

0

] = π[ 0
0

−n

] = 0
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Example

K3(10,2)

I Let

a =

 10
−10

10

 b =

 −10
10
10

 c =

 1
1
−9


and consider the point x̄ and the inequality π̄x ≥ 1 where

I x̄a = x̄b = 1, x̄c = 2 and all other x̄i = 0

I πa = πb = πc = 0 and all other πi = 1 (including πr)

I Note that,
∑

i∈I i · xi = a+ b+ 2c = 2 and x̄ ∈ K3(10,2).

I Also, π̄ satisfies all 2 and 3-term subadditivity conditions:
I πi + πj ≥ πi+j for all i, j, i+ j ∈ I,

I πi + πj + πk ≥ πi+j+k for all i, j, k, i+ j + k ∈ I,

I And yet, π̄x̄ = 0 6≥ 1!
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In General

Consider Km(n, r) and let I = [−n, n]m.

k-term subadditivity

We say that π ∈ R|I| satisfies k-term subadditivity if∑
i∈S

πi ≥ πS

for all S ⊆ I such that (i) |S| ≤ k and (ii)
∑
i∈S

i ∈ I

Validity via subadditivity

It is possible to construct invalid cuts πx ≥ 1 for Km(n, r) where π
satisfies the normalization conditions and k-subadditivity unless

k ≥ max{2, 3 · 2m−3 + 1}

(for m ≥ 1, the lower bound is: 2, 2, 4, 7, 13, 25, . . .)
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K3(n, r)

Theorem

If π satisfies 4-term subadditivity, then πx ≥ 1 is valid for K3(n, r).

T 3 is a polaroid for K3(n, r)

T 3 =


πi + πj + πk + πl ≥ πi+j+k+l, ∀i, j, k, l, i+ j + k + l ∈ I

πi + πj = πr, ∀i, j ∈ I, i+ j = r

π0 = 0, πr = 1, π[−n
0
0

] = π[ 0
−n

0

] = π[ 0
0

−n

] = 0

where I = [−n, n]3
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Thank you...
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