
Towards Solving Very Large Scale Train Timetabling
Problems by Lagrangian Relaxation

Frank Fischer, Christoph Helmberg
Chemnitz University of Technology

Jürgen Janßen, Boris Krostitz
Deutsche Bahn AG, Konzernentwicklung, GSU 1

Problem description
Classical Train Timetabling Problem (TTP).
Goal: generate a timetable for the whole German railway network
of Deutsche Bahn.

Problem description
Classical Train Timetabling Problem (TTP).
Goal: generate a timetable for the whole German railway network
of Deutsche Bahn.
Given:

• railway network (stations, tracks, track switches ...)

• passenger and freight trains with predefined route

Restrictions:

• running times, headway times, capacities

• base timetable for passenger trains

Goal:

• feasible timetable with few delays

Former work

The TTP is a well investigated problem:

• periodic scheduling literature
• Serafini, Ukovich (1989)
• Kroon, Dekker, Michiel, Vromans (2005)
• Liebchen (2006)

• non-periodic scheduling literature
• Schrijver, Steenbeck (1994)
• Higgins, Kozan, Ferreira (1997)
• Brännlund, Lindberg, Nõu, Nilsson (1998)
• Caprara, Fischetti, Toth (2002)
• Cacchiani, Caprara, Toth (2006)
• Caprara, Kroon, Monaci, Peeters, Toth (2006)
• Ingolotti, Baber, Tormos, Lova, Ealido, Abril (2006)
• Borndörfer, Schlechte (2007)

Problem data

Given:

• infrastructure digraph D = (V ,A) where
• V set of stations, track switches ...
• A set of tracks, may be

• double tracks

• single tracks

• absolute node capacities
• directional capacities

Problem data

Example: absolute and directional capacities.

3

1 2

absolute left dir. right. dir.

3 1 2

2 3

4

absolute left dir. right. dir.

4 2 3

Trains

For each train j ∈ T :

• train type m(j) ∈ M

• predefined route: ordered sequence of nodes
U(j) = (uj

1, . . . , u
j
nj), nj ∈ N

Furthermore for each passenger train

• stopping interval I j
i =

[
tS ,j
i , tE ,j

i

]
⊂ Z ∪ {±∞}

“when the train has to wait”

• minimal stopping time d j
i ∈ Z+.

“how long the train has to wait”

train must arrive before tE ,j
i and must not leave before tS,j

i + d j
i .

Stopping interval and minimal stopping time

Example: stopping interval = [1, 5], minimal stopping time = 2
minutes
The following examples are valid:

54321 54321

54321

Running times

A train needs some time from one station to the next, its running
time.
This depends on the train type (m ∈ M) and on whether the train
stops or passes at the stations:

Pass

Stop Stop

StopPass

Stop

tR
a : M × BR → Z+, a ∈ A,BR = {pass, stop}

Headway times

There must be a safety distance between two sequent trains on the
same track, the minimal headway times.

t2 t1

t1 + tH
a ≤ t2

They depend on both train-types and stopping behaviours:

tH
a : M × BR ×M × BR → Z+.

Model

Classic model via time discretised networks for the single train
routes (e.g. Caprara et al.):
For each train j ∈ T a graph G j = (V j ,Aj) where

• V j contains
• an artificial start-node σj ,
• an artificial end-node τ j ,
• a wait-node and a stop-node node for each station, time-step

• Aj contains
• starting arcs from σj to the first station’s nodes,
• ending arcs from the last station’s nodes to τ j ,
• waiting arcs between two successive wait-nodes of one station,
• running arcs connecting nodes of successive stations
• infeasible arcs from each intermediate station’s node to τ j .

Train graphs: nodes

t=1

t=3

t=4

t=6

t=7

t=2

t=5

Station 3Station 2

stop nodes
train stops at the station

run nodes
train passes through the station

nodes

Train graphs: waiting arcs

t=1

t=3

t=4

t=6

t=7

t=2

t=5

Station 2 Station 3

waiting arcs

Train graphs: running arcs

run-
run

t=1

t=3

t=4

t=6

t=7

t=2

t=5

Station 3Station 2

t=1

t=3

t=4

t=6

t=7

t=2

t=5

Station 2 Station 3

run-
stop

start-
run

t=1

t=3

t=4

t=6

t=7

t=2

t=5

Station 2 Station 3
t=1

t=3

t=4

t=6

t=7

t=2

t=5

Station 2 Station 3

start-
stop

running arcs

Train graphs: infeasible arcs

t=1

t=3

t=4

t=6

t=7

t=2

t=5

Station 1 Station 2 Station 3 Station 4 Station 5

infeasible arcs

Variables

Let A :=
⋃

j∈T Aj be the set of all arcs.
Introduce binary variables for each arc:

xa ∈ {0, 1}, a ∈ A,

with the interpretation for a ∈ Aj :

xa = 1⇔ train j uses arc a.

Capacity constraints
Only a bounded number of trains may enter an infrastructure node
v ∈ V at the same time t because of absolute capacities and
directional capacities.
Lead to constraints of the form

∑
a∈δ−(v ,t)

xa ≤ cv absolute capacities

and ∑
a∈δ−(uv ,t)

xa ≤ cuv , directional capacities

where

δ−(v , t) =
{

((b′, i ′, t ′)j , (b, i , t)j) ∈ A : uj
i = v

}
,

δ−(uv , t) =
{

((b′, i ′, t ′)j , (b, i , t)j) ∈ A : uj
i−1uj

i = uv
}
.

Capacity constraints

Example: station 42 has capacity 1

t=1

t=3

t=4

t=6

t=2

t=5

Station 42

t=1

t=3

t=4

t=6

t=2

t=5

Station 42Station 1 Station 66

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

∑
a∈{red arcs}

xa ≤ 1.

Headway constraints
Between two trains on the same physical track minimal headway
times are required for safety reasons (e.g. Lukac).
Two arcs

((b1, i1, t1)j , (b2, i2, t2)j) ∈ Aj and ((b′1, i
′
1, t
′
1)j ′ , (b′2, i

′
2, t
′
2)j ′) ∈ Aj ′

with t1 ≤ t ′1 conflict if either

• uj
i1

uj
i2

= uj ′

i ′1
uj ′

i ′2
= uv ∈ A and

t1 + tH
uv (m(j), (b1, b2),m(j ′), (b′1, b

′
2)) > t ′1, or

• uj
i1

uj
i2

= uj ′

i ′2
uj ′

i ′1
= uv ∈ AS and

t1 + tHS
uv (m(j), (b1, b2),m(j ′), (b′1, b

′
2)) > t ′1.

Lead to constraints of the type∑
a∈C

xa ≤ 1,

where C is a clique in the conflict graph.

Headway constraints
Example:
• train 1 first, train 2 second: 3 minutes
• train 2 first, train 1 second: 2 minutes

t=20

t=21

t=22

t=23

t=24

t=20

t=24

t=21

t=22

t=20

t=22

t=23

t=24

t=21

t=23

Station 42 Station Y Station 23 Station X Station YStation X

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Conflict graph Constraint

∑
a∈{red arcs}

xa ≤ 1

Objective function

• high costs on infeasible-arcs,

• no costs on running-arcs (running is good),

• increasing costs on waiting arcs (waiting is bad)

ILP formulation

maximize
X
a∈A

xawa

subject to

flow conservation

8>>><>>>:
X

a∈δ+(σj)

xa = 1, j ∈ T ,

X
a∈δ+(v)

xa =
X

a∈δ−(v)

xa, j ∈ T , v ∈ V j \ {σj , τ j},

capacity

8>>><>>>:
X

a∈δ−(v,t)

xa ≤ cv , v ∈ V , t ∈ S ,

X
a∈δ−(uv,t)

xa ≤ cuv , uv ∈ A, t ∈ S ,

headway

 X
a∈C

xa ≤ 1, C ∈ C,

binary
˘

xa ∈ {0, 1}, a ∈ A.

Solution methods

Goal: rounding heuristics based on a relaxation of the ILP.

Because of the large size of the instances, solving the LP relaxation
by a state-of-the-art solver is too slow.

⇒ solve the Lagrangian dual obtained by relaxation of the coupling
constraints.

Lagrange dual and decomposition

Let

• Dx ≤ d be the coupling constraints,

• D j , j ∈ T , be the columns corresponding to the xa, a ∈ Aj ,

• Xj =
{

x ∈ RAj
: x is valid path in G j

}
.

The LP reads

max
Dx≤d
x∈X

wT x

with the Lagrangian dual problem

inf
y≥0

dT y +
∑
j∈T

max
x j∈Xj

[(
w j − D j T y

)T
x j

] .

Bundle method

The bundle method requires the evaluation of

ϕ(y) = dT y +
∑
j∈T

max
x j∈Xj

[(
w j − D j T y

)T
x j

]

for given y .
These are independent shortest-path problems.
Each optimal solution x(y) of the shortest path problems yields a
subgradient

g(y) = d − Dx(y).

The bundle method (see, e.g., Lemaréchal)

• requires an oracle returning the function value and a
subgradient,

• generates a sequence of convex-combinations of the paths
returned by the oracle, the so called primal aggregates.

Primal aggregates and separation

The primal aggregates

• converge to an optimal solution of the LP-relaxation of the
TTP ⇒ can be used by rounding heuristics,

• may be used for primal separation of the conflict constraints,
see Helmberg (2004).

Why primal separation?

• capacity constraints: relatively small number, easy to separate,

• headway constraints: possibly exponentially large number,
separated by heuristics.

Numerical results
Three test instances based on south-west network of DB (roughly
Baden-Wuerttemberg):

Numerical results

Three test instances based on south-west network of DB (roughly
Baden-Wuerttemberg):

1. A small part of the network containing the five most
frequently used arcs,

2. the main long-distance and freight traffic route along the river
Rhine,

3. the whole subnet.

Instance Nodes Arcs Passenger Freight Variables

1 104 193 242 9 317336
2 656 1210 50 67 2448842
3 2103 4681 2501 659 8990060

Solving the relaxation
Memory and time consumption by Cplex and ConicBundle (on an
Intel Xeon Dual Core, 3 GHz, 16 GB RAM):

Instance Cplex ConicBundle Size

1 33s 12s 160 MB
2 1945s 341s 1 GB
3 – 2512s 6 GB

Development of the objective function:

-152000

-151000

-150000

-149000

-148000

-147000

-146000

-145000

-144000

-143000

-142000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time in seconds.

First integer results

First round heuristics based on successive fixation of arcs yielded
good results for instance 1 and 2, but not for 3:

Instance Time Infeasible trains Late trains Average delays

1 39s 0 0 0
2 697s 0 0 0
3 3182s 40 906 865s

3b 10h 9 778 603s

Reducing the problem size

Problem:

• instances are too large,

• separation of headway constraints too expensive.

Solution ideas:

• create train-graphs dynamically,

• instead of separation of headway constraints, model feasible
configurations by configuration-networks.

Dynamic train-graphs

Most trains only use a small part of their trains:

Idea: create only required parts of the network.

Dynamic train-graphs

Dynamically constructed train-graph:

Remark: The dynamic creation of train-graphs requires an
appropriate cost-structure (given in our case).

Configuration networks

Goal: Replace headway constraints by configuration networks, that
model feasible train runs.

Configuration networks: structure
(Borndörfer et al, 2007)

• one configuration network for each infrastructure arc,

• train-arcs are activated by the configuration-networks,

Type 1 Type 2

Type 1 Type 2

configuration graph

Configuration networks: structure
(Borndörfer et al, 2007)

• one configuration network for each infrastructure arc,

• train-arcs are activated by the configuration-networks,

Type 1 Type 2 Type 1 Type 2

configuration graph example configuration

Configuration networks: structure
(Borndörfer et al, 2007)

• one configuration network for each infrastructure arc,

• train-arcs are activated by the configuration-networks,

Train 2

Train 1

Train 3

Type 1 Type 2

train graph example configuration

Configuration networks

Pros:

• no separation of headway constraints necessary,

• instead simple coupling constraints between train-graphs and
configuration networks.

Cons:

• number of variables increases a lot,

• dynamic generation of configuration networks required.

Next steps

• implementation of (dynamic) configuration networks,

• exploit dual sensitivity information for better rounding
heuristics,

• robustness.

Thank you for your attention.

