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Problem description

Classical Train Timetabling Problem (TTP).
Goal: generate a timetable for the whole German railway network
of Deutsche Bahn.
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Problem description

Classical Train Timetabling Problem (TTP).

Goal: generate a timetable for the whole German railway network
of Deutsche Bahn.

Given:

e railway network (stations, tracks, track switches ...)
e passenger and freight trains with predefined route
Restrictions:
e running times, headway times, capacities
e base timetable for passenger trains
Goal:

e feasible timetable with few delays



Former work

The TTP is a well investigated problem:

o periodic scheduling literature

Serafini, Ukovich (1989)
Kroon, Dekker, Michiel, Vromans (2005)
Liebchen (2006)

e non-periodic scheduling literature

Schrijver, Steenbeck (1994)

Higgins, Kozan, Ferreira (1997)

Brannlund, Lindberg, N&u, Nilsson (1998)

Caprara, Fischetti, Toth (2002)

Cacchiani, Caprara, Toth (2006)

Caprara, Kroon, Monaci, Peeters, Toth (2006)
Ingolotti, Baber, Tormos, Lova, Ealido, Abril (2006)
Borndorfer, Schlechte (2007)



Problem data

Given:
e infrastructure digraph D = (V, A) where

e V set of stations, track switches ...
o A set of tracks, may be
7777777 M
e double tracks & rrrrrr
o single tracks W ZZzZz77 @

e absolute node capacities
e directional capacities



Problem data

Example: absolute and directional capacities.

o nTTmeN absolute left dir.  right. dir.
3 1 2
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Trains

For each train j € T:
e train type m(j) € M
e predefined route: ordered sequence of nodes
UG) = (uf,...,ub),n €N
Furthermore for each passenger train
e stopping interval I{' = [tis’j, t,-E’j} C Z U {£o0}
“when the train has to wait”
e minimal stopping time df €Z,.
“how long the train has to wait”

train must arrive before tf” and must not leave before t,-s*’ + df.



Stopping interval and minimal stopping time

Example: stopping interval = [1,5], minimal stopping time = 2

minutes

The following examples are valid:
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Running times

A train needs some time from one station to the next, its running
time.

This depends on the train type (m € M) and on whether the train
stops or passes at the stations:
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Headway times

There must be a safety distance between two sequent trains on the
same track, the minimal headway times.
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They depend on both train-types and stopping behaviours:

t:’:MxBRxMxBR—>Z+.



Model

Classic model via time discretised networks for the single train
routes (e.g. Caprara et al.):
For each train j € T a graph G/ = (V/, AV) where
e \V/J contains
e an artificial start-node o7,
e an artificial end-node 7/,
e a wait-node and a stop-node node for each station, time-step
e A/ contains
starting arcs from o’ to the first station's nodes,
ending arcs from the last station’s nodes to 7/,
waiting arcs between two successive wait-nodes of one station,
running arcs connecting nodes of successive stations
infeasible arcs from each intermediate station’s node to 7/.



Train graphs: nodes

Station 2 Station 3

o
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train stops at the station
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Train graphs: waiting arcs

Station 2 Station 3

waiting arcs



Train graphs: running arcs

Station 2 Station 3

Station 2 Station 3

run- < < run-
run < ~ stop
start- N - start-
run R . stop

running arcs




Train graphs: infeasible arcs

Station 1 Station 2 Station 3 Station 4 Station 5

infeasible arcs



Variables

Let A:=Ujer Al be the set of all arcs.
Introduce binary variables for each arc:

x; €{0,1},a € A,

with the interpretation for a € A/:

Xa = 1 & train j uses arc a.



Capacity constraints
Only a bounded number of trains may enter an infrastructure node
v € V at the same time t because of absolute capacities and
directional capacities.
Lead to constraints of the form

Z X; < ¢y absolute capacities
acd—(v,t)
and
Z X5 < Cyv, directional capacities
acd~ (uv,t)
where

0 (v, t)

{((b’, "tV (b tY) e A: vl = v},
5 (v, t) = {((B, 7,6, (b, t)) € As ol yuf = v}



Capacity constraints
Example: station 42 has capacity 1

Station 1 Station 42 Station 66 Station 42

a€{red arcs}



Headway constraints
Between two trains on the same physical track minimal headway
times are required for safety reasons (e.g. Lukac).
Two arcs

((b17i17t1)j7(b27i27t2)j) € AJ and (( iv’.{vt{)j/>( 2>i2>t2)J )

with t; < t] conflict if either
° u{lufz u/u’ =uv € Aand
b+ el (m()), (by, ba), m(7), (by, b)) > 11, or
» ujul = wpuh = v € As and
t+ tf (m(), (br, b2), m(J7), (b, b3)) > 1.
Lead to constraints of the type

Zxa <1,

aeC

where C is a clique in the conflict graph.



Headway constraints
Example:
e train 1 first, train 2 second: 3 minutes
e train 2 first, train 1 second: 2 minutes

Stat; Station 23 Station X  Station Y

Conflict graph Constraint
=20
=21 > xa<l
=22 ae{red arcs}
=23

t=24



Objective function

e high costs on infeasible-arcs,
e no costs on running-arcs (running is good),

e increasing costs on waiting arcs (waiting is bad)

Stations T



ILP formulation

maximize E XaW;
acA

subject to

Z Xa =1, jeT,
. acé+t(ad)
flow conservation . o
S o= Y x jeTveVi\{d ),
aedt(v) acd—(v)
Z Xa < Cu, veV,tes,
. a€d— (v,t)
capacity
Z Xa < Cuvs uv €A teS,
a€d— (uv,t)
headway{ ZXa =1, ceg,
aeC
acA.

binary { x, € {0,1},



Solution methods

Goal: rounding heuristics based on a relaxation of the ILP.

Because of the large size of the instances, solving the LP relaxation
by a state-of-the-art solver is too slow.

= solve the Lagrangian dual obtained by relaxation of the coupling
constraints.



Lagrange dual and decomposition
Let
e Dx < d be the coupling constraints,
e D/ j e T, be the columns corresponding to the x,,a € A/,
o X = {x € R¥: x is valid path in Gf}.
The LP reads

max WTX
Dx<d

xeX

with the Lagrangian dual problem

XJGJC/

|nf dTy + Z max |:(Wj — DjTy>ij]



Bundle method

The bundle method requires the evaluation of

oly) = dTy—i—Z max [(Wj _ DJ'Ty)TXj:|

XJEDC’

for given y.

These are independent shortest-path problems.

Each optimal solution x(y) of the shortest path problems yields a
subgradient

g(y) = d = Dx(y).
The bundle method (see, e.g., Lemaréchal)
e requires an oracle returning the function value and a
subgradient,
e generates a sequence of convex-combinations of the paths
returned by the oracle, the so called primal aggregates.



Primal aggregates and separation

The primal aggregates
e converge to an optimal solution of the LP-relaxation of the
TTP = can be used by rounding heuristics,

e may be used for primal separation of the conflict constraints,
see Helmberg (2004).

Why primal separation?
e capacity constraints: relatively small number, easy to separate,

e headway constraints: possibly exponentially large number,
separated by heuristics.



Numerical results

Three test instances based on south-west network of DB (roughly
Baden-Wuerttemberg):




Numerical results

Three test instances based on south-west network of DB (roughly
Baden-Wuerttemberg):
1. A small part of the network containing the five most
frequently used arcs,
2. the main long-distance and freight traffic route along the river
Rhine,
3. the whole subnet.

Instance Nodes Arcs Passenger Freight Variables
1 104 193 242 9 317336
2 656 1210 50 67 2448842
3 2103 4681 2501 659 8990060




Solving the relaxation

Memory and time consumption by CPLEX and ConicBundle (on an
Intel Xeon Dual Core, 3 GHz, 16 GB RAM):

Instance CPLEX ConicBundle Size
1 33s 12s 160 MB
2 1945s 341s 1GB
3 - 2512s 6 GB
Development of the objective function:
-142000 K T T T T T -
-143000 r
-144000 £
-145000
-146000 $
-147000 5*
-148000 8
-149000 1 * 1
-150000 | % 1
-151000 | * « X % wom]
-152000 - - -

0 200 400 600 800 100012001400160018002000
Time in seconds.



First integer results

First round heuristics based on successive fixation of arcs yielded
good results for instance 1 and 2, but not for 3:

Instance  Time Infeasible trains Late trains Average delays

1 39s 0 0 0
2 697s 0 0 0
3 3182s 40 906 865s

3b 10h 9 778 603s




Reducing the problem size

Problem:

e instances are too large,

e separation of headway constraints too expensive.
Solution ideas:

e create train-graphs dynamically,

e instead of separation of headway constraints, model feasible
configurations by configuration-networks.



Dynamic train-graphs

Most trains only use a small part of their trains:

Idea: create only required parts of the network.



Dynamic train-graphs

Dynamically constructed train-graph:

Remark: The dynamic creation of train-graphs requires an
appropriate cost-structure (given in our case).



Configuration networks

Goal: Replace headway constraints by configuration networks, that
model feasible train runs.



Configuration networks: structure
(Borndorfer et al, 2007)

e one configuration network for each infrastructure arc,
e train-arcs are activated by the configuration-networks,

---Q

Type 1 Type 2

configuration graph



Configuration networks: structure
(Borndorfer et al, 2007)

e one configuration network for each infrastructure arc,
e train-arcs are activated by the configuration-networks,

Type 1 Type 1

configuration graph example configuration



Configuration networks: structure
(Borndorfer et al, 2007)

e one configuration network for each infrastructure arc,
e train-arcs are activated by the configuration-networks,

Train 1 _

train graph

Type 1

example configuration



Configuration networks

Pros:
e no separation of headway constraints necessary,

e instead simple coupling constraints between train-graphs and
configuration networks.

Cons:
e number of variables increases a lot,

e dynamic generation of configuration networks required.



Next steps

e implementation of (dynamic) configuration networks,

e exploit dual sensitivity information for better rounding
heuristics,

e robustness.



Thank you for your attention.



