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Sorting by Comparisons
Input: a set T of size n, totally ordered by <

Goal: place the elements of T in a vector v in such a way that
v[l] < v[2] < -+ < v[n]

after asking a min number of questions of the form “is t < t'?”
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Partial Order Production (“Partial Sorting”)

Input: a set T of size n, totally ordered by <
a partial order < on the set of positions [n] :={1,2,...,n}

Goal: place the elements of T in a vector v in such a way that

v[i] < v[j] whenever i<

after asking a min number of questions of the form “is t < t/?”

afadamgaratate

v[1] v[2] S S v[n]



Particular Cases (1/2)

Heap Construction
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Particular Cases (2/2)

Multiple Selection

Find the elements of
rank ri, o, ..., r




Particular Cases (2/2)
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Target poset P := ([n], %)
is a weak order




Particular Cases (2/2)

Multiple Selection

Find the elements of
rank ri, r», ..., rk

Target poset P := ([n], %)
is a weak order

3 near-optimal algorithm
(Kaligosi, Mehlhorn,
Munro and Sanders, 05)



Worst Case Lower Bounds

Well known fact. For Sorting by Comparisons:

worst case F#comparisons > Ig n!
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where e(P) := # linear extensions of P
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Fact. (Schonage 76, Aigner 81) For Partial Order Production:

worst case #comparisons > g n! — Ig e(P)
—_——

=:LB

where e(P) := # linear extensions of P

F

|leaf set| < e(P) = #comparisons > Ig#!g) = LB
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Problem History

1976 Schonage defined POP problem

1981 Aigner studied POP problem

1985 two surveys: Bollobds & Hell, and Saks.
Saks conjectured that 3 algorithm for POP problem
s.t. worst case #comparisons = O(LB) + O(n)

1989 Yao solved Saks' conjecture, stated open problems



Our Result

There exists a O(n%) algorithm for the POP problem s.t.

worst case #comparisons = LB + o(LB) + O(n)

Improvements over Yao’s algorithm:

» overall complexity is polynomial

» smaller number of comparisons



A Simple Plan

1. Extend the target poset P to a weak order W

2. Solve the problem for W using Multiple Selection algorithm



Key Tool: the Entropy of a Graph
The entropy of G = (V, E) equals:
H(G):= min 2 Z lg x,
veV

x€STAB(G) n

where STAB(G) := stable set polytope of G



Key Tool: the Entropy of a Graph

The entropy of G = (V, E) equals:

1
H(G) = i —— lg xy,
(©)i=  pine) ~n 2.8

where STAB(G) := stable set polytope of G

» Introduced in information theory by J. Kérner (73)
» Graph invariant with lots of applications (mostly in TCS)
bounds for perfect hashing

circuit lower bounds for monotone Boolean functions
sorting under partial information (Kahn and Kim 95)
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Lemma. (Kahn and Kim 95)

—nH(G) <IgVol(STAB(G)) < nlgn—Ign!—nH(G)
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=lg Vol(Box) =lg Vol(Simplex)
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Comparability Graphs and Entropy

G(P) := comparability graph of target poset P

R

e(P)

n!

Lemma. (Stanley 86) Vol (STAB(G(P))) =

Corollary. nH(P) —nlge < LB < nH(P)



Weak Order Extensions — Colorings

Observation.
Every weak order extension W of P gives a coloring of G(P)

U
Want: “good” coloring of G(P)

W extends P = STAB(G(P)) 2 STAB(G(W))
—  H(P) < H(W)

Intuition.
H(W) should be as small as possible

Y

The class sizes should be distributed as unevenly as possible



Greedy Colorings and Greedy Points

For G = perfect graphs

Iteratively remove a maximum stable set from G

~ sequence S1, Sy, ..., S, of stable sets

» Gives greedy coloring (k colors, ith color class = S;)

» Also gives greedy point:

vz vy2 13



Theorem. Let G be a perfect graph on n vertices and denote by g
the entropy of an arbitrary greedy point X € STAB(G). Then

< ﬁ (H(G)+Ig(15>

for all 0 > 0, and in particular

& < H(G) +Ig H(G) + O(1).

Proof idea. Dual fitting, using min-max relation
H(G) + H(G) =lgn

due to Csiszar, Korner, Lovasz, Marton and Simonyi (90) O



Colorings ~ Weak Order Extensions
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Colorings 4 Weak Order Extensions

Weak order extensions of P — colorings of G(P)

<7L

= need to “uncross” our greedy colorings



Uncrossing a Greedy Coloring

D = D(P) := auxiliary network with source s, sink t

D = (N(D), A(D))




. . 1
(H-potential) min —EZngV

veVv
st. X, = y+—y,- VveV
Ya < Yb V(a, b) GA(D)
Ys = 0
e = 1

Find potential y for greedy point X (by DP)

We get:

» collection of open intervals {(}7‘,7,)7\#) }VEV

» interval order | extending P, with H(/) close to H(P)
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Main Steps of our Algorithm

greedy+DP
P~ =

o 1 EEY W

3. Use Multiple Selection algorithm of Kaligosi et al. on W

Theorem. The algorithm above solves the POP problem, in O(n®)
time, after performing at most

LB+ o(LB) + O(n)

comparisons



Further Result & Open Questions

Tightness result:

» Any algorithm reducing the POP problem to Multiple
Selection can be forced to perform

LB+ Q(nlglgn)

comparisons for some P with H(P) ~ % lg n

Open questions:

> Is there an algorithm performing LB 4+ O(n) comparisons?

» What about Partial Order Production under Partial
Information?



Thank You!

P.S.: The paper is available on ArXiv



