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Sorting by Comparisons
Input: a set T of size n, totally ordered by 6

Goal: place the elements of T in a vector v in such a way that

v [1] 6 v [2] 6 · · · 6 v [n]

after asking a min number of questions of the form “is t 6 t ′?”

T

v[1] v[2] . . . . . . v[n]
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Partial Order Production (“Partial Sorting”)

Input: a set T of size n, totally ordered by 6
a partial order 4 on the set of positions [n] := {1, 2, . . . , n}

Goal: place the elements of T in a vector v in such a way that

v [i ] 6 v [j ] whenever i 4 j

after asking a min number of questions of the form “is t 6 t ′?”

v[1] v[2] . . . . . . v[n]



Particular Cases (1/2)
Heap Construction
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Particular Cases (2/2)
Multiple Selection

v[r3]

v[r2]

1v[r ]

Find the elements of
rank r1, r2, . . . , rk

Target poset P := ([n],4)
is a weak order

∃ near-optimal algorithm
(Kaligosi, Mehlhorn,
Munro and Sanders, 05)



Particular Cases (2/2)
Multiple Selection

v[r3]

v[r2]

1v[r ]

Find the elements of
rank r1, r2, . . . , rk

Target poset P := ([n],4)
is a weak order

∃ near-optimal algorithm
(Kaligosi, Mehlhorn,
Munro and Sanders, 05)



Particular Cases (2/2)
Multiple Selection

v[r3]

v[r2]

1v[r ]

Find the elements of
rank r1, r2, . . . , rk

Target poset P := ([n],4)
is a weak order

∃ near-optimal algorithm
(Kaligosi, Mehlhorn,
Munro and Sanders, 05)



Worst Case Lower Bounds

Well known fact. For Sorting by Comparisons:

worst case #comparisons ≥ lg n!



Fact. (Schönage 76, Aigner 81) For Partial Order Production:

worst case #comparisons ≥ lg n!− lg e(P)︸ ︷︷ ︸
=: LB

where e(P) := # linear extensions of P

n!

|leaf set| ≤ e(P) =⇒ #comparisons ≥ lg n!
e(P) = LB
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Problem History

1976 Schönage defined POP problem

1981 Aigner studied POP problem

1985 two surveys: Bollobás & Hell, and Saks.

Saks conjectured that ∃ algorithm for POP problem

s.t. worst case #comparisons = O(LB) + O(n)

1989 Yao solved Saks’ conjecture, stated open problems
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Our Result

There exists a O(n3) algorithm for the POP problem s.t.

worst case #comparisons = LB + o(LB) + O(n)

Improvements over Yao’s algorithm:

I overall complexity is polynomial

I smaller number of comparisons



A Simple Plan

1. Extend the target poset P to a weak order W

2. Solve the problem for W using Multiple Selection algorithm

WP



Key Tool: the Entropy of a Graph

The entropy of G = (V ,E ) equals:

H(G ) := min
x∈STAB(G)

−1

n

∑
v∈V

lg xv

where STAB(G ) := stable set polytope of G

I Introduced in information theory by J. Körner (73)

I Graph invariant with lots of applications (mostly in TCS)

I bounds for perfect hashing
I circuit lower bounds for monotone Boolean functions
I sorting under partial information (Kahn and Kim 95)
I . . .
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Lemma. (Kahn and Kim 95)

−n H(G )︸ ︷︷ ︸
=lg Vol(Box)

≤ lg Vol(STAB(G )) ≤ n lg n − lg n!− n H(G )︸ ︷︷ ︸
=lg Vol(Simplex)
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Comparability Graphs and Entropy

G (P) := comparability graph of target poset P

H(P) := H(G (P))

P G(P )

Lemma. (Stanley 86) Vol
(
STAB

(
G (P)

))
=

e(P)

n!

Corollary. n H(P)− n lg e ≤ LB ≤ n H(P)



Weak Order Extensions → Colorings

Observation.
Every weak order extension W of P gives a coloring of G (P)

⇓
Want: “good” coloring of G (P)

W extends P =⇒ STAB
(
G (P)

)
⊇ STAB

(
G (W )

)
=⇒ H(P) ≤ H(W )

Intuition.
H(W ) should be as small as possible

⇓
The class sizes should be distributed as unevenly as possible



Greedy Colorings and Greedy Points
For G = perfect graphs

Iteratively remove a maximum stable set from G

 sequence S1,S2, . . . ,Sk of stable sets

I Gives greedy coloring (k colors, ith color class = Si )

I Also gives greedy point:

x̃ :=
k∑

i=1

|Si |
n
· χSi ∈ STAB(G )

1/21/3 1/6

1/2 1/2 1/3



Theorem. Let G be a perfect graph on n vertices and denote by g̃
the entropy of an arbitrary greedy point x̃ ∈ STAB(G ). Then

g̃ ≤ 1

1− δ

(
H(G ) + lg

1

δ

)
for all δ > 0, and in particular

g̃ ≤ H(G ) + lg H(G ) + O(1).

Proof idea. Dual fitting, using min-max relation

H(G ) + H(Ḡ ) = lg n

due to Csiszár, Körner, Lovász, Marton and Simonyi (90) �



Colorings 6→ Weak Order Extensions

Weak order extensions of P → colorings of G (P)

6←

=⇒ need to “uncross” our greedy colorings
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Uncrossing a Greedy Coloring

D = D(P) := auxiliary network with source s, sink t

D = (N(D),A(D))

1

4 5 6

32
 − 6−

6+5

−

3+2+1+

−1 3

+4+

2−

5−4

s

t



(H-potential) min −1

n

∑
v∈V

lg xv

s.t. xv = yv+ − yv− ∀v ∈ V

ya 6 yb ∀(a, b) ∈ A(D)
ys = 0
yt = 1

Find potential ỹ for greedy point x̃ (by DP)

We get:

I collection of open intervals
{

(ỹv− , ỹv+)
}

v∈V

I interval order I extending P, with H(I ) close to H(P)
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Main Steps of our Algorithm

1. P
greedy+DP

↪→ I

2. I
greedy
↪→ W

3. Use Multiple Selection algorithm of Kaligosi et al. on W

Theorem. The algorithm above solves the POP problem, in O(n3)
time, after performing at most

LB + o(LB) + O(n)

comparisons



Further Result & Open Questions

Tightness result:

I Any algorithm reducing the POP problem to Multiple
Selection can be forced to perform

LB + Ω(n lg lg n)

comparisons for some P with H(P) ≈ 1
2 lg n

Open questions:

I Is there an algorithm performing LB + O(n) comparisons?

I What about Partial Order Production under Partial
Information?



Thank You!

P.S.: The paper is available on ArXiv


