An Efficient Algorithm for Partial Order Production

Jean Cardinal ULB/CS

Samuel Fiorini ULB/Math

Gwenaël Joret ULB/CS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Raphaël Jungers UCL/INMA

Ian Munro Waterloo/CS

Sorting by Comparisons

Input: a set T of size n, totally ordered by \leq

Goal: place the elements of T in a vector v in such a way that

 $v[1] \leqslant v[2] \leqslant \cdots \leqslant v[n]$

after asking a min number of questions of the form "is $t \leq t'$?"

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー のへで

Sorting by Comparisons

Input: a set T of size n, totally ordered by \leq

Goal: place the elements of T in a vector v in such a way that

 $v[1] \leqslant v[2] \leqslant \cdots \leqslant v[n]$

after asking a min number of questions of the form "is $t \leq t'$?"

Partial Order Production ("Partial Sorting")

Input: a set T of size n, totally ordered by \leq a partial order \preccurlyeq on the set of positions $[n] := \{1, 2, ..., n\}$

Goal: place the elements of T in a vector v in such a way that

 $v[i] \leqslant v[j]$ whenever $i \preccurlyeq j$

after asking a min number of questions of the form "is $t \leq t'$?"

Particular Cases (1/2)

Heap Construction

or

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Particular Cases (2/2)

Multiple Selection

Find the elements of rank r_1, r_2, \ldots, r_k

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Particular Cases (2/2)

Multiple Selection

Find the elements of rank r_1, r_2, \ldots, r_k

Target poset $P := ([n], \preccurlyeq)$ is a weak order

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Particular Cases (2/2)

Multiple Selection

Find the elements of rank r_1, r_2, \ldots, r_k

Target poset $P := ([n], \preccurlyeq)$ is a weak order

∃ near-optimal algorithm (Kaligosi, Mehlhorn, Munro and Sanders, 05)

Worst Case Lower Bounds

Well known fact. For Sorting by Comparisons:

worst case #comparisons $\ge \lg n!$

worst case
$$\#$$
comparisons $\geq \underbrace{\lg n! - \lg e(P)}_{=:LB}$

where e(P) := # linear extensions of P

worst case
$$\#$$
comparisons $\geq \underbrace{\lg n! - \lg e(P)}_{=:LB}$

where e(P) := # linear extensions of P

worst case
$$\#$$
comparisons $\geq \underbrace{\lg n! - \lg e(P)}_{=:LB}$

where e(P) := # linear extensions of P

worst case
$$\#$$
comparisons $\geq \underbrace{\lg n! - \lg e(P)}_{=:LB}$

where e(P) := # linear extensions of P

worst case
$$\#$$
comparisons $\geq \underbrace{\lg n! - \lg e(P)}_{=:LB}$

where e(P) := # linear extensions of P

 $||eaf set| \le e(P) \Longrightarrow \#comparisons \ge \lg \frac{n!}{e(P)} = LB$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1976 Schönage defined POP problem

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

1976 Schönage defined POP problem

1981 Aigner studied POP problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1976 Schönage defined POP problem

1981 Aigner studied POP problem

1985 two surveys: Bollobás & Hell, and Saks. Saks conjectured that \exists algorithm for POP problem s.t. worst case #comparisons = O(LB) + O(n)

1976 Schönage defined POP problem

1981 Aigner studied POP problem

1985 two surveys: Bollobás & Hell, and Saks. Saks conjectured that \exists algorithm for POP problem s.t. worst case #comparisons = O(LB) + O(n)

1989 Yao solved Saks' conjecture, stated open problems

Our Result

There exists a $O(n^3)$ algorithm for the POP problem s.t.

worst case #comparisons = LB + o(LB) + O(n)

Improvements over Yao's algorithm:

- overall complexity is polynomial
- smaller number of comparisons

A Simple Plan

- 1. Extend the target poset ${\it P}$ to a weak order ${\it W}$
- 2. Solve the problem for W using Multiple Selection algorithm

Key Tool: the Entropy of a Graph

The entropy of G = (V, E) equals:

$$H(G) := \min_{x \in STAB(G)} -\frac{1}{n} \sum_{v \in V} \lg x_v$$

where STAB(G) := stable set polytope of G

Key Tool: the Entropy of a Graph

The entropy of G = (V, E) equals:

$$H(G) := \min_{x \in STAB(G)} -\frac{1}{n} \sum_{v \in V} \lg x_v$$

where STAB(G) := stable set polytope of G

- Introduced in information theory by J. Körner (73)
- Graph invariant with lots of applications (mostly in TCS)
 - bounds for perfect hashing
 - circuit lower bounds for monotone Boolean functions
 - sorting under partial information (Kahn and Kim 95)

▶ ...

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Comparability Graphs and Entropy

G(P) := comparability graph of target poset PH(P) := H(G(P))

Lemma. (Stanley 86) $\operatorname{Vol}(STAB(G(P))) = \frac{e(P)}{n!}$ Corollary. $n H(P) - n \lg e \le LB \le n H(P)$

Weak Order Extensions — Colorings

Observation.

Every weak order extension W of P gives a coloring of G(P) \Downarrow Want: "good" coloring of G(P)

$$\begin{array}{rcl} W \text{ extends } P & \Longrightarrow & STAB(G(P)) \supseteq STAB(G(W)) \\ & \Longrightarrow & H(P) \leq H(W) \end{array}$$

Intuition.

H(W) should be as small as possible \downarrow The class sizes should be distributed as **unevenly** as possible

Greedy Colorings and Greedy Points For *G* = perfect graphs

Iteratively remove a maximum stable set from G

 \rightsquigarrow sequence S_1, S_2, \ldots, S_k of stable sets

• Gives greedy coloring (k colors, ith color class = S_i)

Also gives greedy point:

$$\tilde{x} := \sum_{i=1}^{k} \frac{|S_i|}{n} \cdot \chi^{S_i} \in STAB(G)$$

Theorem. Let G be a perfect graph on n vertices and denote by \tilde{g} the entropy of an arbitrary greedy point $\tilde{x} \in STAB(G)$. Then

$$ilde{g} \leq rac{1}{1-\delta} \left(\mathsf{H}(\mathsf{G}) + \lg rac{1}{\delta}
ight)$$

for all $\delta > 0$, and in particular

$$\widetilde{g} \leq H(G) + \lg H(G) + O(1).$$

Proof idea. Dual fitting, using min-max relation

$$H(G)+H(\bar{G})=\lg n$$

due to Csiszár, Körner, Lovász, Marton and Simonyi (90)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Weak order extensions of $P \rightarrow$ colorings of G(P) $\not\leftarrow$

 \implies need to "uncross" our greedy colorings

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Uncrossing a Greedy Coloring

D = D(P) := auxiliary network with source *s*, sink *t* D = (N(D), A(D))

 4^+ 5^+ 6^+ $4^ 5^ 6^ 1^+$ 2^+ 3^+ $1^ 2^ 3^-$

(H-potential) min
$$-\frac{1}{n} \sum_{v \in V} \lg x_v$$

s.t. $x_v = y_{v^+} - y_{v^-} \quad \forall v \in V$
 $y_a \leqslant y_b \qquad \forall (a, b) \in A(D)$
 $y_s = 0$
 $y_t = 1$

Find potential \tilde{y} for greedy point \tilde{x} (by DP)

We get:

- collection of open intervals $\left\{ \left(\tilde{y}_{v^{-}}, \tilde{y}_{v^{+}} \right) \right\}_{v \in V}$
- interval order I extending P, with H(I) close to H(P)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Main Steps of our Algorithm

1.
$$P \stackrel{greedy+DP}{\hookrightarrow} I$$

2.
$$I \stackrel{greedy}{\hookrightarrow} W$$

3. Use Multiple Selection algorithm of Kaligosi et al. on W

Theorem. The algorithm above solves the POP problem, in $O(n^3)$ time, after performing at most

LB + o(LB) + O(n)

comparisons

Further Result & Open Questions

Tightness result:

 Any algorithm reducing the POP problem to Multiple Selection can be forced to perform

 $LB + \Omega(n \lg \lg n)$

comparisons for some P with $H(P) \approx \frac{1}{2} \lg n$

Open questions:

▶ Is there an algorithm performing LB + O(n) comparisons?

What about Partial Order Production under Partial Information?

Thank You!

P.S.: The paper is available on ArXiv