Discrete Optimization with Ordering

Elena Fernández Barcel-berg { Tecnical University of Catalonia Visiting Institut für Informatik. Heidelberg

> Justo Puerto University of Seville

Antonio Rodríguez-Chía University of Cádiz

Aussois 2009

Discrete Optimization with ordering

Discrete optimization problems where feasible solutions are sequences of elements which are ordered with respect to a priority (hierarchy) function.

The cost of an element depends on its position on the sequence.

- Multiperiod problems
- Scheduling and sequencing problems
- ...
- The simple ordering problem (SOP)
 - Ordered sequences
 - Some properties
 - The polyhedron of the SOP
- > The simple ordering problem with cardinality constraint
- > The simple ordering problem on an independence system
- The ordered median spanning tree problem

Ordered sequences

- ➢ Ground set: E= { $e_1, e_2, ..., e_n$ }. N = {1, 2, ..., n}.
- Feasible Solutions: sequences with at most $p \le n$ elements

which are ordered wrt function $c. K = \{1, 2, ..., p\}$.

 $[e_{j_1}, e_{j_2}, ..., e_{j_r}], r \le p$, such that $j_i < j_{i+1}$

e_{j1} ... e_{j2} ... e_{jr}

 \triangleright E_K: multiset with p copies of each element $e \in E$.

- $F \subseteq \mathsf{E}_{\mathsf{K}}$, $F = \left\{ e_{j_1}^{k_1}, e_{j_2}^{k_2}, \dots, e_{j_r}^{k_r} \right\}$ with $k_1 \le k_2 \le \dots \le k_r$
- $F \subseteq E_{K}$, ordered sequence $\Leftrightarrow k_{i} < k_{i+1}$ and $j_{i} < j_{i+1}$, i = 1, ..., p-1
- Additive objective function: The value of each element depends on its position in the sequence.

$$d: \mathsf{E}_{\mathsf{K}} \longrightarrow \mathbb{R}$$
$$e_{j}^{k} \longrightarrow d_{j}^{k}$$
$$F \longrightarrow \sum_{e_{i}^{k} \in F} d_{j}^{k}$$

Example

$$\mathsf{E} = \{e_1, e_2, e_3, e_4\} \ (c_1 \ge c_2 \ge c_3 \ge c_4), p = \mathbf{3}.$$
$$d = \begin{pmatrix} 2 & 0 & 5 \\ 2 & 2 & 3 \\ 3 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

 $F = \{e_2^1, e_2^2, e_3^2, e_1^3\}$ is not an ordered sequence

Ordered sequences:

$$F_1 = \{e_2^1, e_3^2\}, \qquad F_2 = \{e_2^2\}, \qquad F_3 = \{e_1^3\}$$
$$d(F_1) = 2, \qquad d(F_2) = 2, \qquad d(F_3) = 5$$

Some properties of ordered sequences

> $I = (E_{K}, \mathcal{F})$ is an Independence System,

where $\mathcal{F} = \{F \subseteq \mathsf{E}_{\mathsf{K}} : F \text{ is an ordered sequence}\}.$

 $F \subseteq \mathsf{E}_{\mathsf{K}}$ ordered sequence $\Rightarrow S$ ordered sequence, for all $S \subseteq F$.

> $\ell(F) = \max\{ |S| : S \subseteq F, S \text{ is an ordered sequence} \}.$

F is an ordered sequence $\Leftrightarrow \ell(F) = |F|$.

> $I = (E_{K}, \mathcal{F})$ is not a matroid

For a given *F*, it is possible to find maximal ordered sequences *S*, $T \subseteq F$ such that $\ell(S) \neq \ell(T)$,

The Simple Ordering Problem (SOP):

Given E, c, *p*, *d*,

to find an ordered sequence of maximum total weight with respect to *d*.

$$d(F^*) := \max \qquad d(F)$$

s.t. $|F| \le \ell(F), \qquad \text{for all } F \subseteq E_K$

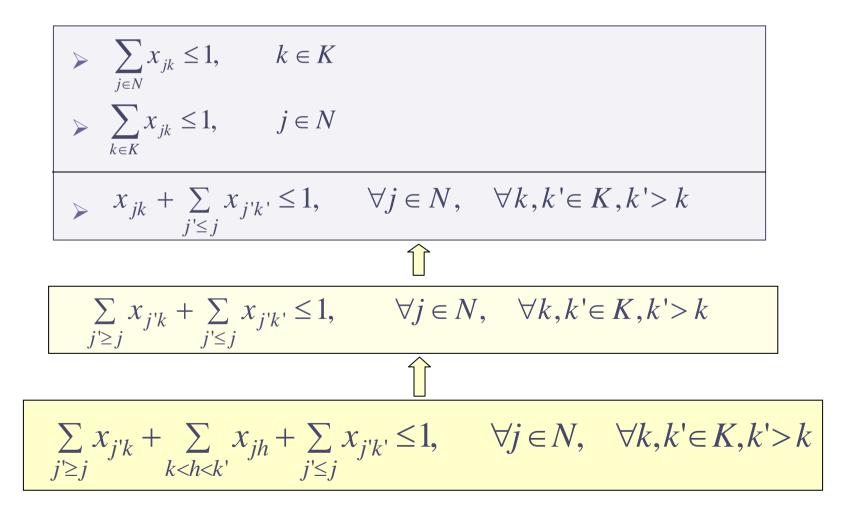
An optimal solution may have any number of elements in the range [0, p].

$$d = \begin{pmatrix} -2 & 0 & -5 \\ -2 & -2 & -3 \\ -3 & 0 & -1 \\ -1 & -1 & -2 \end{pmatrix} \qquad \qquad d = \begin{pmatrix} 2 & 0 & 15 \\ 2 & 2 & 3 \\ 3 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix} \qquad \qquad d = \begin{pmatrix} 2 & 0 & 5 \\ 2 & 2 & 3 \\ 3 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

The polyhedron of the SOP

 $x_{jk} = \begin{cases} 1 & \text{if element } e_j^k \text{ is selected} \\ 0 & \text{otherwise} \end{cases}$

 $\mathsf{P}_{\mathsf{SOP}} = \mathsf{conv} \{ x \in \{0, 1\}^{\mathsf{n} \times \mathsf{p}} : x(F) \leq \ell(F), \text{ for all } F \subseteq \mathsf{E}_{\mathsf{K}} \}$

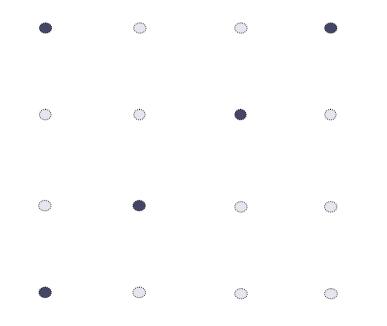


 $\sum_{j\in N} x_{jk} \leq 1$ $\sum_{k \in K} x_{jk} \leq 1$ 0 0 • O O 0 0 0 • • • • 0 0 : : : : O ... • • 0 • Ο ... 0 0 • O ... 0 0 • О 0 0 0 • 0 0 $\sum_{j' \ge j} x_{j'k} + \sum_{j' < j} x_{j'k'} \le 1$ $\sum_{j' \ge j} x_{j'k} + \sum_{k < h < k'} x_{jh} + \sum_{j' < j} x_{j'k'} \le 1$ k k'↓ k k'↓ 0 0 •
 •
 •
 •
 •
 •
 • 0 0 0 0 0 0 0 0 0 0 • 0 0 : : : : 0 0 ○●● 0 • 0 0 ^{....} 0 0 ^{....} o o o ^{....} • • • • 0 0 0 0 • • • • • • 0 0 • 0 0 0 0 • о 0 0

$$\sum_{j' \ge j} x_{j'k} + \sum_{k < h < k'} x_{jh} + \sum_{j' \le j} x_{j'k'} \le 1, \quad \forall j \in N, \quad \forall k, k' \in K, k' > k$$

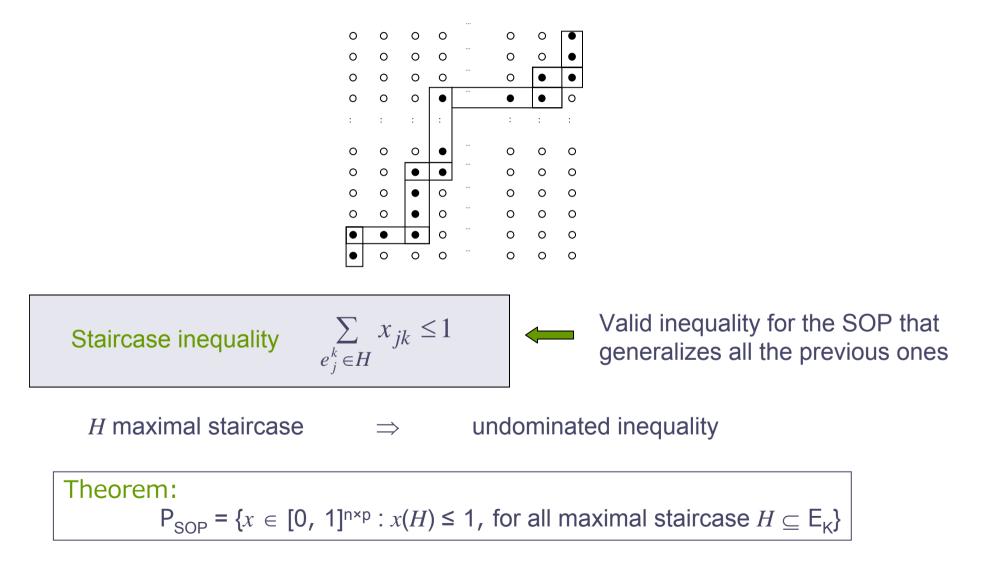
$$\sum_{k' \le k} x_{jk'} + \sum_{j < h < j'} x_{hk} + \sum_{k' > k} x_{j'k'} \le 1 \quad \forall j, j' \in N, j' < j, \quad \forall k \in K$$
Not enough

E =
$$\{e_1, e_2, e_3, e_4\}$$
 p=4,
 $x_{11} = x_{41} = x_{32} = x_{23} = x_{14} = 1/3$



Staircase: $H \subseteq \mathsf{E}_{\mathsf{K}}$ s.t. e_j^k , $e_j^{k'} \in H$ and $j' \leq j$, then $k \leq k'$.

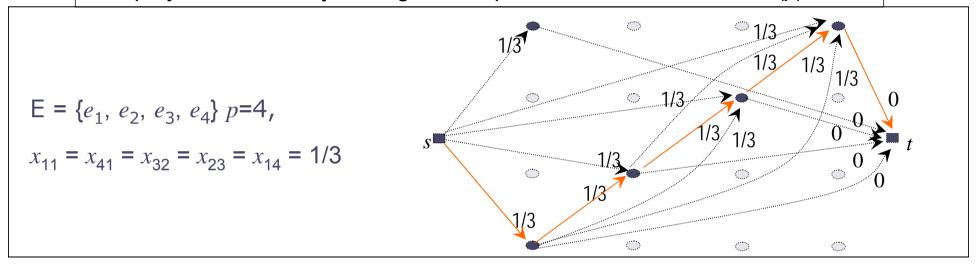
Maximal staircase: staircase not contained in any other



Separation of staircase inequalities

Proposition:

For a given $y \in \mathbb{R}^{n \times p}$ such that $0 \le y_{jk} \le 1$, for all $j \in N$, $k \in K$, the separation problem for staircase inequalities can be solved in polynomial time by finding an s-t-path of maximum cost in N(y).



 $N(y) = (V_y \cup \{s, t\}, A(y))$

- $V_y = \{v_j^k \in E_K : y_{jk} > 0\}$: support of *y*;
- s and t: fictitious source and sink.

A(y) contains the following arcs:

- One arc (s, v_j^k) of cost y_{jk} , for each node $v_j^k \in V_y$.
- One arc $(v_j^k, v_{j'}^{k'})$ of cost $y_{j'k'}$ for each pair $v_j^k, v_{j'}^{k'} \in V_y$, with $j \ge j'$ and $k \le k'$.
- One arc (v_j^k, t) of cost zero, for each node $v_j^k \in V_y$.

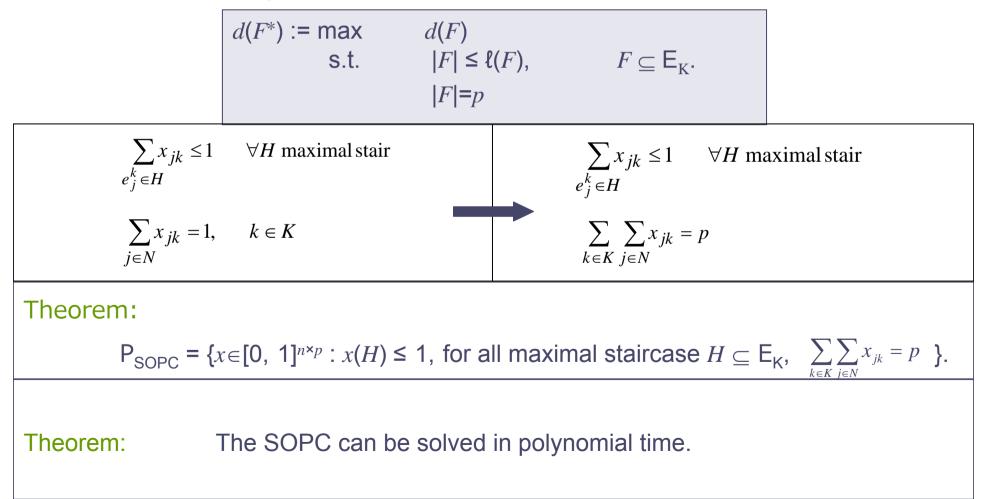
Theorem:

The SOP can be solved in polynomial time.

The simple ordering problem with cardinality constraint (SOPC)

Given E, *c*, *p*, *d*,

to find an ordered sequence that contains exactly one element of each $k \in K$, of maximal total weight with respect to *d*.



The simple ordering problem on an independence system (SOPI)

Given E, *c*, *p*, *d* + Independence System $J = (E, \mathcal{H})$

 $I = (E_K, \mathcal{F})$ Independence System induced by order function c

 $J_{K} = (E_{K}, \mathcal{H}_{K})$ Independence System

$$\left\{e_{j_{1}}^{k}, e_{j_{2}}^{k}, \dots, e_{j_{r}}^{k}\right\} \in \mathcal{H}_{K} \quad \longleftrightarrow \quad \left\{e_{j_{1}}, e_{j_{2}}, \dots, e_{j_{r}}\right\} \in \mathcal{H}$$

to find an ordered sequence of \mathcal{F} which is an independent set of \mathcal{H}_{K} of maximum total weight with respect to *d*.

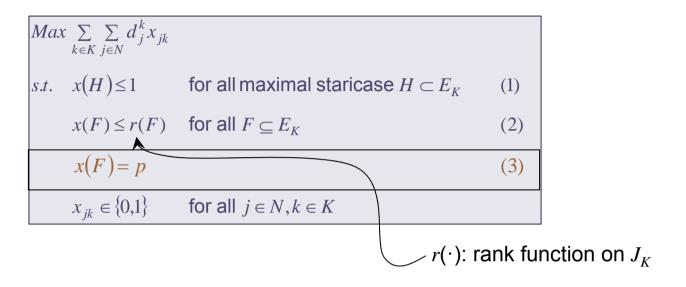
$$\mathcal{L}(F) = \max\{|S| : S \subseteq F, S \in \mathcal{F} \cap \mathcal{H}_K\}.$$

$d(F*) := \max$	d(F)	
s.t.	$ F \leq \mathcal{L}(F),$	$F \subseteq E_{K}.$
	F = p	

 $\mathsf{P}_{\mathsf{SOPI}} = \mathsf{conv} \{ x \in \{\mathbf{0}, 1\}^{n \times p} : x(F) \le \mathscr{U}(F), F \subseteq \mathsf{E}_{\mathsf{K}} \}$

 $\mathsf{P}_{\mathsf{SOPIC}} = \mathsf{conv} \{ x \in \{\mathbf{0}, \mathbf{1}\}^{n \times p} : x(F) \leq \mathscr{U}(F), F \subseteq \mathsf{E}_{\mathsf{K}}, |F| = p \}$

Mathematical Programming Formulation of SOPI(C)



$$\{x \in \{0, 1\}^{n \times p}: x \text{ satisfies (1) and (2)}\}$$
has fraccional vertices
$$E = \{e_1, e_2, e_3\} \text{ edges of } K_3, p=3 \text{ and } \mathcal{H} \text{ given by forests in } K_3$$
$$d = \begin{pmatrix} 1 & 0 & 1.5 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 $x_{11} = x_{22} = x_{13} = x_{33} = 1/2$ $z^* = 2.25$

Some properties of $P_{SOPI} = conv \{x \in \{0, 1\}^{n \times p} : x \text{ satisfies (1) and (2)} \}$

▶ Inequalities $x(F) \le r(F)$ need not be facets of P_{SOPI}

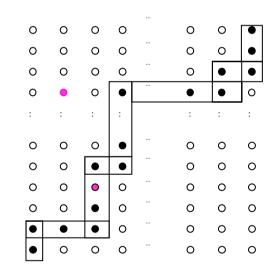
E = { e_1 , e_2 , e_3 } edges of K_3 , p=3 and \mathcal{H} given by forests in K_3

$$F = \{e_2^1, e_2^2, e_3^3\}, \quad r(F) = 2$$

$$x_{11} + x_{22} + x_{33} \le 2$$
 is dominated by
$$x_{11} + x_{22} + x_{32} + x_{33} \le 2$$

More properties of $P_{SOPI} = conv \{x \in \{0, 1\}^{n \times p} : x \text{ satisfies (1) and (2)} \}$

Proposition: Let $H \subseteq E_K$ be a maximal staircase such that for all $e_j^k \in E_K \setminus H \exists e_j^k \in H$ s.t. $\{e_j^k, e_j^k\} \in \mathcal{F} \cap \mathcal{H}_K$. Then, $x(H) \leq 1$ is a facet of $\mathsf{P}_{\mathsf{SOPI}}$.



More properties of $P_{SOPI} = conv \{x \in \{0, 1\}^{n \times p} : x \text{ satisfies (1) and (2)} \}$

Proposition: Let $H \subset E_{K}$ be a maximal staircase such that

for all
$$e_i^k \in \mathsf{E}_{\mathsf{K}} \setminus H \exists e_i^k \in H \text{ s.t. } \{e_i^k, e_i^k\} \in \mathcal{F} \cap \mathcal{H}_{\mathsf{K}}.$$

Then, $x(H) \leq 1$ is a facet of P_{SOPI} .

Corollary: If $\{e_j, e_{j'}\} \in \mathcal{H}$ for all $j, j' \in N$, then for all maximal staircase H, $x(H) \leq 1$ is a facet of $\mathsf{P}_{\mathsf{SOPI}}$.

Conditions hold:

- $J = (E, \mathcal{H})$: forests in graph (V,E)
- $J = (E, \mathcal{H})$: sets of l.i. columns of an $m \times n$ matrix A such that not two columns are l.d.
- $J = (E, \mathcal{H})$: independence system induced by a knapsack type constraint with coefficients vector $a \in \mathbb{R}^n$ and right hand side a_0 such that $a_j + a_{j'} \le a_0$ for all $j, j', j \ne j'$.

Conditions do not hold:

• $J = (E, \mathcal{H})$: matchings in graph (V,E)

Ordered median objective function

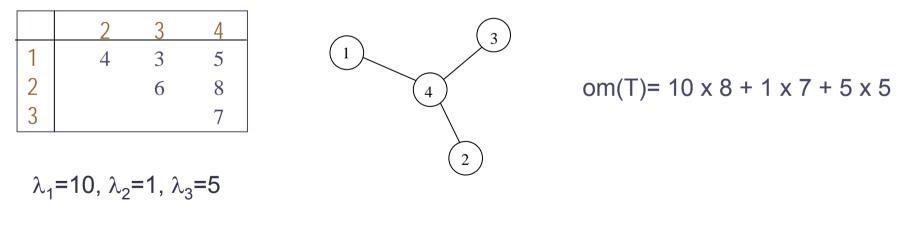
Given	Ordered median of F	
E, <i>p</i> , <i>K</i>	$om(F) = \sum_{k \in K} \lambda_k c_{e_{\pi_F(k)}}$	
$c: E \to \mathbb{R}, \\ \lambda: \{1, 2,, p\} \longrightarrow \mathbb{R}^+$	$\pi_{F}:K\longrightarrowK$ t.q.	
$F \subseteq E, F = p,$	$c_{\pi_{F}(1)} \ge c_{\pi_{F}(2)} \ge \cdots \ge c_{\pi_{F}(p)}$.	

lf	λ= (1 , 1 , 1,, 1)	Sum	(median)
lf	λ=(1, 0 , 0,, 0)	Maximum	(center)
lf	λ=(1, 1, ,1,, 0)	k-center	
lf	λ=(1, α,, α,, α)	Cent dian	

Nickel, S., and Puerto, J. (2005). Location Theory. A Unified approach. Springer.

The ordered median spanning tree problem

Given G=(V, E), $c = (c_1, \ldots, c_n)$, $c_1 \ge \ldots \ge c_n$, $\lambda = (\lambda_1, \ldots, \lambda_p) \ge 0$, the Ordered Median Spanning Tree Problem (OMSTP) consists of finding an ordered sequence $\{e^{k_1}_{j_1}, \ldots, e^{k_p}_{j_p}\}$ such that $T = \{e_{j_1}, \ldots, e_{j_p}\}$ is an spanning tree of G, that maximizes the value of $\sum_{k \in K} \lambda_k c_{j_k}$.



 $c_{24} \ge c_{34} \ge c_{14}$

The OMSTP

 $Max \sum_{k \in K} \sum_{j \in N} \lambda_k c_j x_{jk}$ s.t. $x(H) \le 1$ for all maximal staricase $H \subset E_K$ $x(F) \le r(F)$ for all $F \subseteq E_K$ x(F) = p $x_{jk} \in \{0,1\}$ for all $j \in N, k \in K$

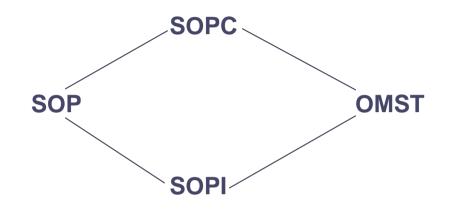
The OMSTP is a SOPIC with $d_i^k = \lambda_k c_i$ and $J = (E, \mathcal{H})$ given by forests in *G*.

Proposition:

The greedy algorithm yields an optimal solution to the OMSTP

Concluding remarks

> Discrete optimization problems with ordering



> The paper can be found at

http://www-eio.upc.es/~elena/doo.pdf

Future work

- Characterization of P_{SOPI}
- Study other (easy) problems with order
- > Study other (less easy) problems with order

Thank you for your attention!