





# Extended formulations for Packing and Partitioning Orbitopes

#### Yuri Faenza (Roma Tor Vergata)

joint work with

#### Volker Kaibel (Magdeburg)

15 Jan 2009

Outline

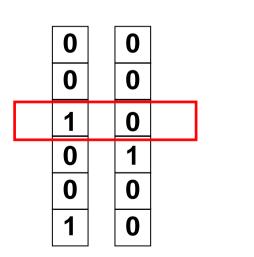
- What Packing and Partitioning Orbitopes are, and what for ?
- P & P orbitopes in the original and in extended spaces.
- New proof of the complete description in the original space.

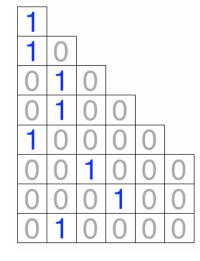
# Packing and partitioning Orbitopes

Consider all 0 - 1 matrices with p rows and q columns that have

- (1) *exactly* one non-zero entry per row;
- (2) columns in lexicographical non-increasing order;

Their convex hull is the partitioning orbitope  $O_{p,q}^{=}$ .

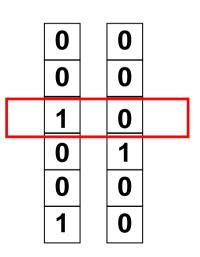


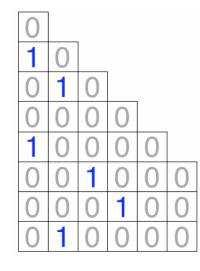


## Packing and partitioning Orbitopes

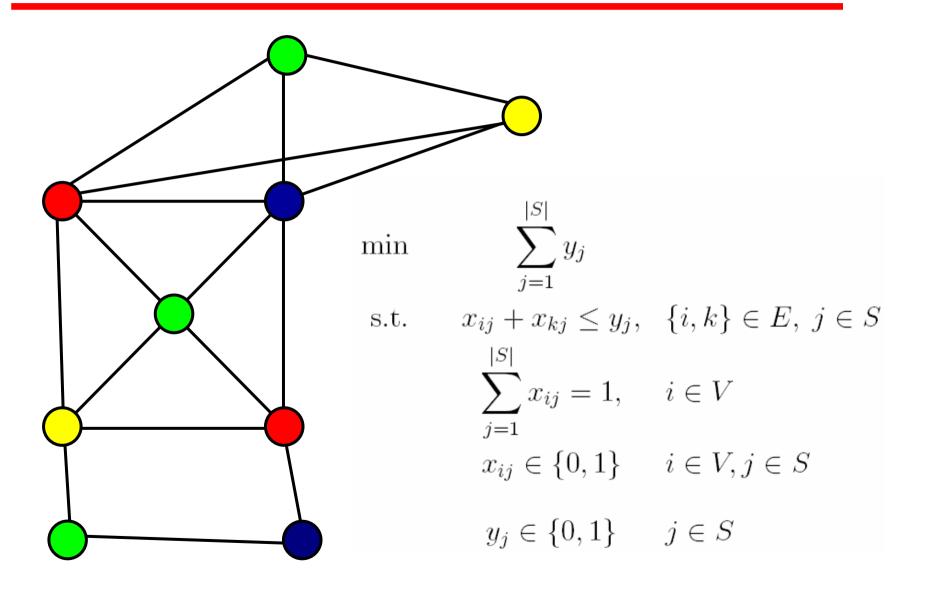
Consider all 0-1 matrices with p rows and q columns that have at most one non-zero entry per row; columns in lexicographical non-increasing order; (2)

Their convex hull is the packing orbitope  $O_{p,q}^{\leq}$ .





### Breaking symmetry in Graph Coloring



## Breaking symmetry using Orbitopes

• Any column-permutation of  $\begin{pmatrix} y^T \\ X \end{pmatrix}$  leads to an "equivalent solution"

- Thus, the solution space is unnecessarily large
- Idea: select one representative from each set of equivalent solutions.
- IP  $\cap O_{p,q}^{=}$  as a symmetry-free formulation
- Re-use  $O_{p,q}^{=}$  for different problems
- Change the number of 1s per row, "new" orbitopes!

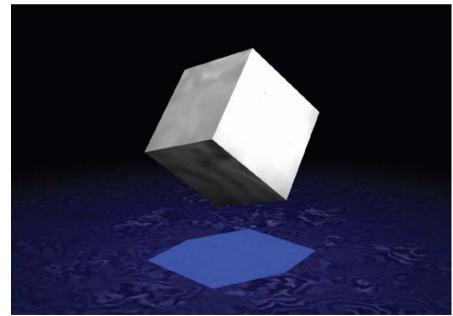
## Some facts on P&P Orbitopes

Introduced by Kaibel and Pfetsch [Math.Progr.08], who gave:

- an  $O(p^2q)$  algorithm for optimizing a linear function over packing and partitioning orbitopes
- a complete ad irredundant description in the original space of  $O_{p,q}^{=}$  (resp.  $O_{p,q}^{\leq}$ ) (SCI THR.):  $-x \ge 0$  $-x(row_i) = 1$  (resp.  $x(row_i) \le 1$ )
  - exponentially many shifted column inequalities

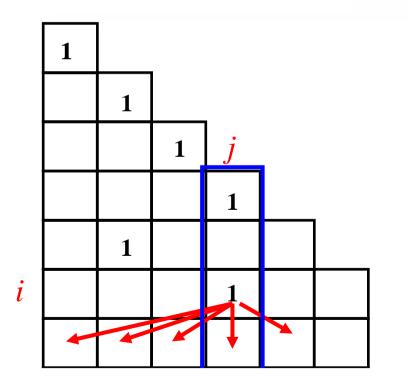
## Extended formulations

$$P = \{x \in \mathbb{R}^n | Ax \le b\}$$
$$Q = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^m | Bx + Cy \le d\}$$
$$Proj_x(Q) = P$$



Lifting partitioning orbitopes (1)

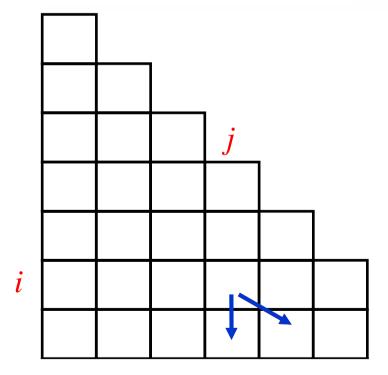
Main idea: Associate each integral  $x \in O_{p,q}^{=}$  with an s - t path on a digraph Kipp Martin, Rardin, Campbell [*Oper.Res.*90]



j(i) =maximum column with a non-zero entry, up to row i

Lifting partitioning orbitopes (1)

Main idea: Associate each integral  $x \in O_{p,q}^{=}$  with an s - t path on a digraph Kipp Martin, Rardin, Campbell [*Oper.Res.*90]

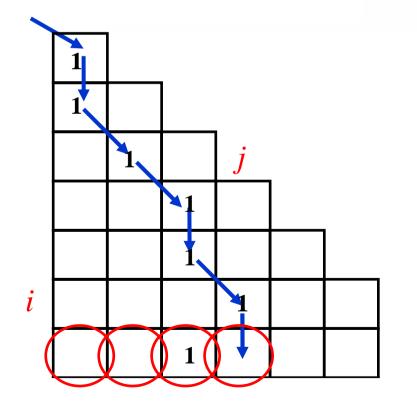


j(i) =maximum column with a non-zero entry, up to row i

$$j(i+1) = j(i)$$
 or  $j(i+1) = j(i) + 1$ 

Lifting partitioning orbitopes (1)

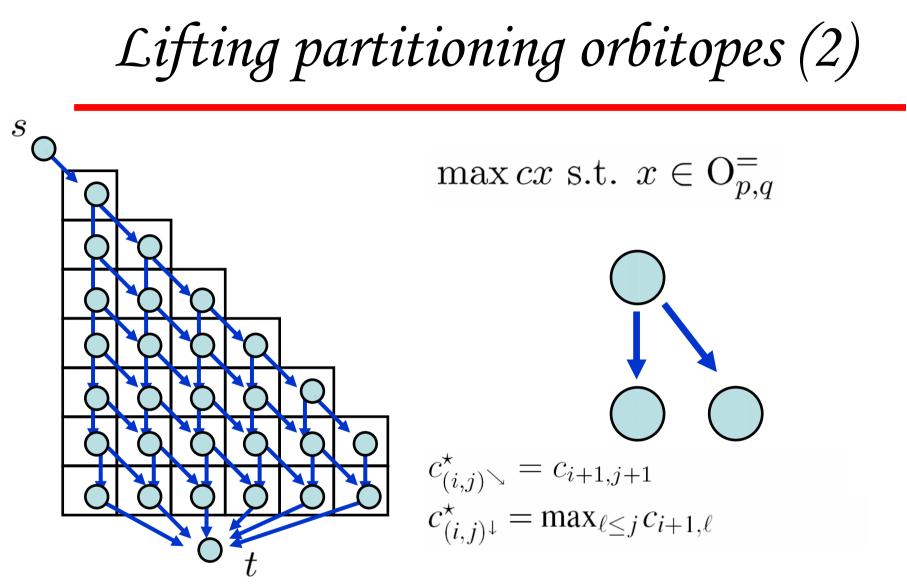
Main idea: Associate each integral  $x \in O_{p,q}^{=}$  with an s - t path on a digraph Kipp Martin, Rardin, Campbell [*Oper.Res.*90]



j(i) =maximum column with a non-zero entry, up to row i

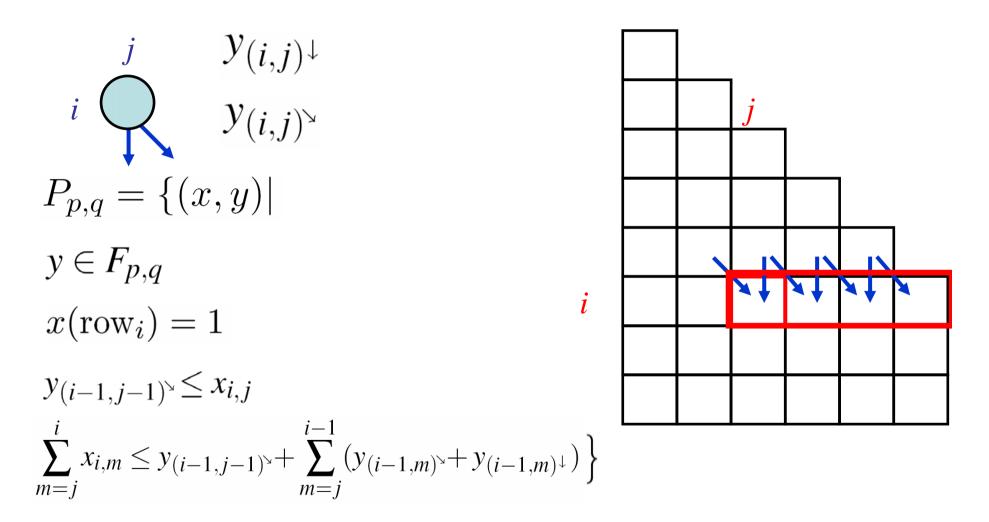
$$j(i+1) = j(i)$$
 or  $j(i+1) = j(i) + 1$ 

A single path in general corresponds to more vertices of  $O_{p,q}^{=}$ 



**Thr**.(F. & Kaibel 08): The problem  $\max cx \text{ s.t. } x \in O_{p,q}^{=}$  can be solved in time O(pq).

#### The extended formulation



**Thr**.(F. & Kaibel 08):  $P_{p,q}$  is an extended formulation for  $O_{p,q}^{=}$ .

Integrality of P – sketch of the proof

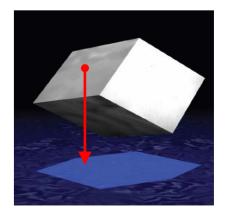
Suppose you want to solve  $\max cx \text{ s.t. } x \in \mathcal{O}_{p,q}^{=}$ Define a new cost vector  $c^*$ 

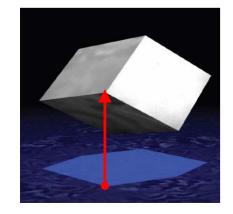
#### Claim1

 $\langle c^{\star}, (0, y) \rangle \geq \langle c, (x, y) \rangle \quad \forall (x, y) \in P_{p,q}$ 

#### Claim2

For each integral  $y \in F_{p,q}$  exists integral x with  $(x,y) \in P_{p,q}$  and  $< c, (x,y) > = < c^*, (0,y) >$ .

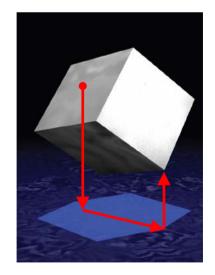




Integrality of P – sketch of the proof

Thus, for each  $(\bar{x}, \bar{y}) \in P_{p,q}$ :

$$< c, (\bar{x}, \bar{y}) > \le < c^*, (0, \bar{y}) > \le \max_{y \in F_{p,q}} < c^*, (0, y) >$$
$$= < c^*, (0, \tilde{y}) > \quad \text{for some integral } \tilde{y}$$
$$= < c, (\tilde{x}, \tilde{y}) > \quad \text{for } \tilde{x} \text{ integral}, (\tilde{x}, \tilde{y}) \in P_{p,q} \square$$



## More on the Extended Formulation

- Once you prove integrality, projecting is easy
- after suitable transformations, we end up with a "very compact" formulation with less than 2pq variables, 4pq constraints and 10pq total nonzero elements.
- (almost) identical results hold for  $O_{p,q}^{\leq}$ (actually, all the work is done for  $O_{p,q}^{\leq}$ )

# Re-proving the SCI - theorem

The SCI-theorem is not necessary in our proofs

Use the extended formulation to obtain a new proof of the complete description in the original space. Why ?

- Find a shorter proof
- Get new insight on the problem

Let  $Q_{p,q}$  be the SCI-polytope. Since we already proved  $\operatorname{Proj}_x(P_{p,q}) = \operatorname{O}_{p,q}^=$  we are left to prove

• 
$$O_{p,q}^{=} \subseteq Q_{p,q};$$

• 
$$Q_{p,q} \subseteq \operatorname{Proj}_x(P_{p,q})$$

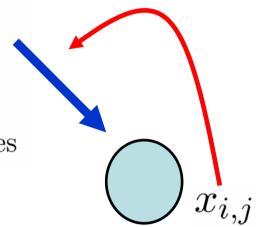
Re-proving the SCI-theorem (1)

(SCI THR.):  $O_{p,q}^{=}$  is completely described by:

•  $x \ge 0$ 

• 
$$x(row_i) = 1$$

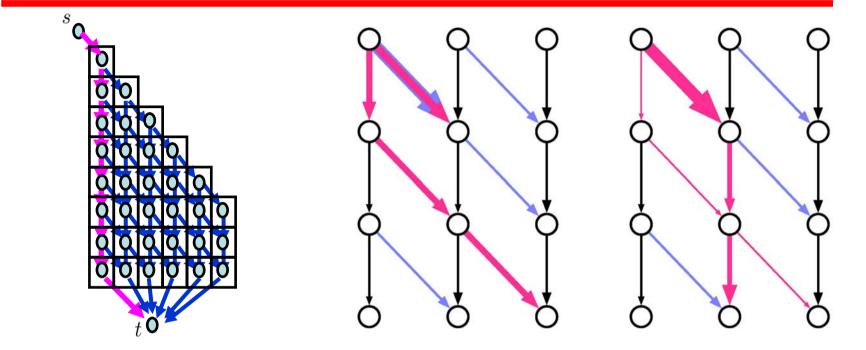
• exponentially many shifted column inequalities



#### New proof:

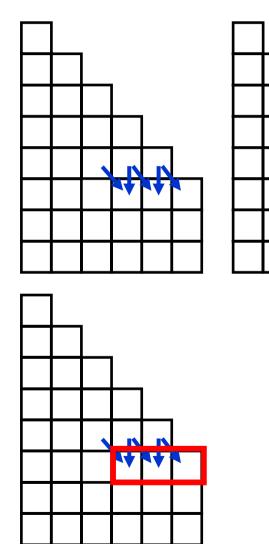
- (1) Start from a point x s.t.  $x(row_i) = 1$  for each i and  $x \ge 0$
- (2) consider a network on digraph D with
  - capacity  $+\infty$  on vertical arcs
  - capacity  $x_{i,j}$  on the diagonal arc entering node (i,j)
- (3) Construct the *rightmost* flow  $y = \Pi(x)$

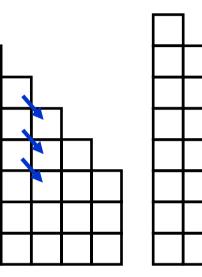
## Constructing the rightmost flow

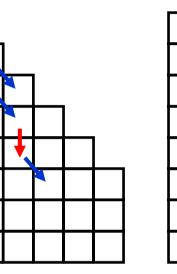


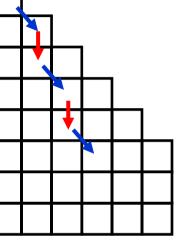
- (4) We shall prove that  $(x, y = \Pi(x)) \in P_{p,q}$ if the SCI are valid
- (5)  $y_{(i-1,j-1)} \leq x_{i,j}$  come for free
- (6) while trying to prove UB inequalities, SCI pops up!

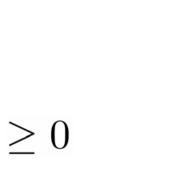
Equivalent flows

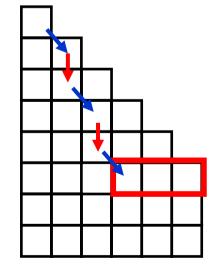










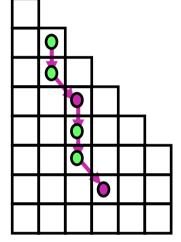


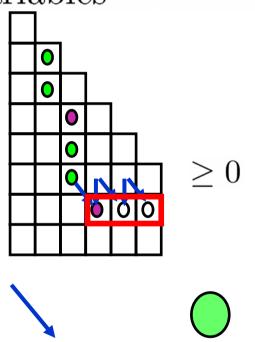


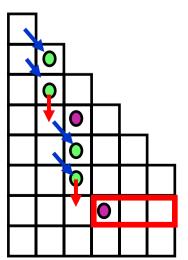
Re-proving the SCI-theorem (3)

- (7) Given (i, j), build a backward leftmost flow
- (8) <u>SCIs</u> imply UB on the x variables

 $\geq 0$ 

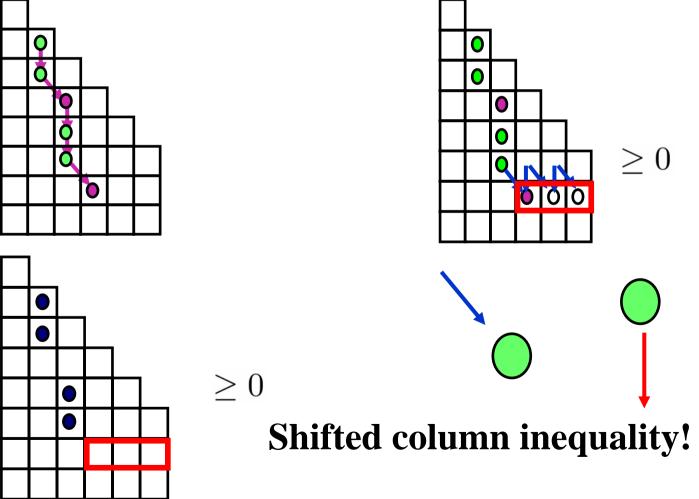






Re-proving the SCI-theorem (3)

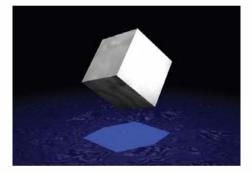
- (7) Given (i, j), build a backward leftmost flow
- (8) <u>SCIs</u> imply UB on the x variables



## Summary and conclusions

Extended formulations for Packing and Partitioning orbitopes...

- (very) compactly describe the polytopes;
- let us optimize faster;
- give more insight;
- shorten proofs;



Thank you!

Paper available at:

http://www.math.uni-magdeburg.de/~kaibel/