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The MISFLP problem

Given a time horizon, a set of customers and a set of facilities
(e.g., production plants),
Multi-period Incremental Service Facility Location Problem
(MISFLP)
is concerned with:

locating the facilities within a given discrete set of potential
sites and
assigning the customers to the facilities along given
periods in a time horizon.
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The MISFLP problem

Assumptions
Ensuring at each single period t the service of a minimum
number of customers, say nt .
The allocation of any customer to the servers might
change in different periods.
Once a customer is served in a time period it must be
served at any subsequent period.
Once a facility is opened it remains open until the end of
the time horizon.
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Variation of the MISFLP problem

We present a variation of the MISFLP where:

Each customer needs to be serviced only in a subset of
the periods of the time horizon
we assume that this set of periods is known for each
customer
There is uncertainty in some parameters of the problem
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The problem

Consider a network including a set of facilities and a set of customers
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The problem

For the costumers:
The allocation of a customer to the facilities might change
at different time periods but
Once a customer is assigned in a given time period, he
must continue to be assigned to one facility.
A costumer cannot be assigned to more than one facility at
each period
All customers must be found to have been assigned at the
end of the time horizon

At each single period
exactly pt facilities are opened
at least nt new customers are covered
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The problem

Costs

Assigning a customer to a facility at a given period incurs a
assignment cost, ct

ij , even if the customer does not have a
need for service in this period.
There is a setup depreciation cost, f t

i for the open facilities.
the penalty cost, ρj , for the customers not served in time by
the facilities
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Uncertainty: Modeling via scenario tree

scenario 1

scenario 2

scenario 3

scenario 4

scenario 5

scenario 6

scenario 7

scenario 8

scenario 9

Two stages

scenario 1

scenario 2

scenario 3

scenario 4

scenario 5

scenario 6

scenario 7

scenario 8

scenario 9

Multi stages

Scenario is an execution of uncertain and deterministic
parameters along different stages of the temporal horizon.

Scenario group for a given stage is the set of scenarios with the
same realization of the uncertain parameters up to the stage.

Scenario tree scheme is a technique used to model and
interpret the uncertainty.
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Parameters

Uncertainty in the problem

The most important uncertainty that we find in this problem is
the number of costumers that will need to be serviced in each
time period

Parameters

dg
j , coefficient that takes the value 1 or 0 depending on

whether or not customer j is available for being serviced at
time period t(g) under scenario group g, ∀j ∈ J .

ng , minimum number of customers to be serviced in time
period t(g) under scenario group g.



Introduction Problem description Uncertainty Impulse-Step variables based (DEM) Algorithmic framework Computational comparison Conclusions

Uncertainty in the problem

Variables

scenario 1

scenario 2

scenario 3

scenario 4

scenario 5

scenario 6

scenario 7

scenario 8

scenario 9

Multi stages

Non-anticipativity principle (Rockafellar and Wets)

If two different scenarios s and s
′

are identical until stage t as to as the
disponible information in that stage, then the decisions (variables) in both
scenarios must be the same too until stage t .
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Uncertainty in the problem

Impulse-Step variables based formulation
0–1 variables

yg
i =

8>><>>:
1, if facility i is open by time period t(g) under

scenario group g

0, otherwise

∀i ∈ I, g ∈ G : t(g) ∈ T ∗

and

xg
ij =

8>><>>:
1, if customer j is assigned to facility i at time

period t(g) under scenario group g

0, otherwise

∀i ∈ I, j ∈ J , g ∈ G−.

where T ∗ = {t ∈ T : t ≤ |T | − τ} and G− ≡ G \ {0}

Note
The x–variables still are impulse variables, but the y–variables are step variables.
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Impulse-Step variables based formulation (DEM)

Pure 0–1 Model

Objective function

min
X
i∈I

f 0
i y0

i +
X

g∈G−
wg
»X

i∈I

“
f t(g)
i (yg

i −yγ(g)
i )+

X
j∈J

ct(g)
ij xg

ij

”
+
X
j∈J

ρj d
g
j

`
1−
X
i∈I

xg
ij

´–
=

X
g∈G

X
j∈J

wgρj d
g
j + min

X
i∈I

» X
g∈G:t(g)∈T ∗

wg(f t(g)
i − f t(g)+1

i )yg
i +

X
g∈G−

wg
X
j∈J

cg
ij x

g
ij

–
(1)

Note

where cg
ij = ct(g)

ij − ρjd
g
j

γ(g), inmediate scenario group to group g
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Impulse-Step variables based formulation (DEM)

Pure 0–1 Model

ConstraintsX
i∈I

X
j∈J

xg
ij ≥ ng ∀ g ∈ G− : t(g) < |T | (2)

X
i∈I

xg
ij ≤ 1 ∀ j ∈ J , g ∈ G− : t(g) < |T | (3)

X
i∈I

xg
ij = 1 ∀ j ∈ J , g ∈ G|T | (4)

X
i∈I

xγ(g)
ij ≤

X
i∈I

xg
ij ∀ j ∈ J , g ∈ G : t(g) > 1 (5)

xg
ij ≤ yγk (g)

i ∀ i ∈ I, j ∈ J , g ∈ G−, where k = min{t(g), τ} (6)X
i∈I

(yg
i − yγ(g)

i ) = pt ∀ g ∈ G− : t(g) ∈ T ∗ (7)

X
i∈I

y0
i = p0 (8)

yγ(g)
i ≤ yg

i ∀ i ∈ I, g ∈ G− : t(g) ∈ T ∗ (9)

xg
ij ∈ {0, 1} ∀ i ∈ I, j ∈ J , g ∈ G− (10)

y tg
i ∈ {0, 1} ∀ i ∈ I, g ∈ G : t(g) ∈ T ∗ (11)
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Splitting variables representation

For a general problem:

min
X
ω∈Ω

pω
`
cT xω+qωT yω

´
s. t. Axω = b

Tωxω +Wyω= hω ∀ω ∈ Ω

xω − xω+1 = 0 ∀ω ∈ Ω

xω , yω∈ {0, 1} ∀ω ∈ Ω
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Branch-and-Fix Coordination

Non-anticipativity constraints are relaxed:

sc. 1

sc. 2

sc. 3

sc. 4
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Branch-and-Fix Coordination

Non-anticipativity constraints are relaxed:

sc. 1

sc. 2

sc. 3

sc. 4
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Branch-and-Fix Coordination

Fix-and-Relax Coordination
Fix-and-Relax

Introduced by Dillebenger et al. in 1994. See also Escudero and
Salmerón in 2005.

It is an heuristic approach to solve multi-level linear integer
problems:

X Initially only variables of the first level are 0-1 defined.
X In successive stages, previous level variables are fixed, and

current level variables are declared integer.

Fix-and-Relax Coordination (FRC)

Combine Fix-and-Relax with Branch-and-Fix Coordination:

X Non-anticipativity conditions are relaxed.
X Each scenario group is solved by Fix and Relax.
X Decisions are coordinated via Branch-and-Fix Coordination

approach.
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Branch-and-Fix Coordination

FRC scheme

Fix-and-Relax submodel

Given V1 . . .VK a partition of K elements of the set of the
variables V, problem

IP : min
x∈X

cx

s. t. xj ∈ {0,1} ∀j ∈ Vk , k = 1, . . . ,K ,

This problem can be approximated by the model

IPk : min
x∈X

cx

s. t. xj = xj ∀j ∈ V ′k , k ′ < k ,

xj ∈ {0,1} ∀j ∈ Vk ,

xj ∈ [0,1] ∀j ∈ V ′k , k < k ′,

It is the so-called FR level k
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FRC scheme

FR levels
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FRC scheme
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FRC scheme

Branching strategy
We have chosen the depth first strategy for the TNF
branching selection
The criterion for branching consists of choosing the
candidate TNF with the smallest Lagrangean Substitution
value among the two sons of the last branched TNF.
We have chosen two largest small deterioration strategies
for the selection of the branching variable.
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On candidate TNF bounding

The bounding of a given candidate TNF, Jf , f ∈ F , can be
obtained by using Lagrangian Decomposition (LD):

ZD(µ) = min
∑
j∈Jf

w j(cjxj + ajyj) +
∑
j∈Jf

µj(xj − xj+1)

s. t. Axj + Byj = bj ∀j ∈ Jf

0 ≤ xj ≤ 1, yj ≥ 0 ∀j ∈ Jf ,

Our aim is to obtain the bound ZD(µ∗), where

µ∗ = argmax{ZD(µ)}.

Note
The number of Lagrange multipliers depends on the number of non yet
branched on/fixed common variables in vector x j and the number of nodes,
|Jf |, in the family.
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BFC algorithm

��������	
�����������

���
	�∀�→������

�
ν������
�
��

����

����������������

�
�

�����≥�����

���������������

�
	�

���

�

�
 
���!�"������# 
	�

���#���$����

�	
��������
%�

���
	→������

!$
�!�"��	����
��

��
����������
�

���
	�
&�����

��� ������#
 ���	�

���������

����	�
������

�

� ����

���������������

������

�

�����������

• �	
��������	� �����

��
���'�

����������&���(�)�
!�"������*�

�

• �	
��������	� ������

�����
���
�

���
���
����

���
��

�
�

��
���

≥≥≥≥�����

�

�
	�

���

�
	� �
	�

���

�
	�

���

�
	�

���

���



Introduction Problem description Uncertainty Impulse-Step variables based (DEM) Algorithmic framework Computational comparison Conclusions

Why we use this modelization for the problem?
A study of the deterministic problem has been done

We have done a computational comparison among:
1 Impulse variables based model
2 Step variables based model
3 Impulse-step variables based model
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Computational Experience Deterministic Version

Implemented in experimental
C++ code.

CPLEX v11 for solving each
instance.

Pentium IV, 1.8Ghz, 512 RAM

Microsoft Visual Studio C++
compiler v6.0.

|J | |I| |T |
50 30 4
50 30 8
50 30 12

100 30 4
100 30 8
100 30 12

10 instances for each row:

Total 60 instances
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Models’ dimensions

Impulse model Impulse-step model Step model

Instance nv nr nel dens
(%) nv nr nel dens

(%) nv nr nel dens
(%)

E4-P30-C50 6120 6388 42240 0.108 6120 6448 33390 0.085 6120 12048 30290 0.041
E8-P30-C50 12240 12796 111480 0.071 12240 12976 69870 0.044 12240 24176 60770 0.021
E12-P30-C50 18360 19204 204720 0.058 18360 19504 106350 0.030 18360 36304 91250 0.014
E4-P30-C100 12120 12738 84240 0.055 12120 12798 66390 0.043 12120 23998 60190 0.021
E8-P30-C100 24240 25546 222480 0.036 24240 25726 138870 0.022 24240 48126 120670 0.010
E12-P30-C100 36360 38354 408720 0.029 36360 38654 211350 0.015 36360 72254 181150 0.006



Introduction Problem description Uncertainty Impulse-Step variables based (DEM) Algorithmic framework Computational comparison Conclusions

Computational experience
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Computational experience
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Graphical comparison of the results obtained with
the different models

Model M1 with respect to Model M2
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Graphical comparison of the results obtained with
the different models

Model M3 with respect to Model M2
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Conclusions and Future work

A variation of the multi-period incremental service facility location problem has
been presented.

A variation with uncertainty in the demand and the set of periods when each
customer requieres service is presented by using Stochastic Programming.

Three 0–1 equivalent formulations are proposed for the deterministic models,
based on the impulse and step variables approaches.

An intensive computational experimentation has been performed for the
deterministic models.

Impulse-Step variables based formulation shows better results.

Work-in-progress:

Computational experience for the stochastic model
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