
disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

Successive Shortest Path (SSP) Algorithm with

Multipliers

Birgit Engels

ZAIK
University of Cologne

13th Combinatorial Optimization Workshop
January 11th-17th, Aussois

Motivated by a
joint project of:



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

A freight car disposition problem

Complexity of integral flow with multipliers 1,2

Instances with fractional vs. halfintegral solutions

A modified SSP algorithm

Obtaining an integral solution



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

basic problem formulation

input:

• known supplies/demands of empty freight cars (103 − 104)

supply demand



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

basic problem formulation

input:

• known supplies/demands of empty freight cars (103 − 104)

• both of different types at different locations and times

22, Berlin,
Jan 11th, 10:00

10, Berlin,
Jan 12th, 10:00

42, Munich,
Jan 16th, 13:00

56, Cologne,
Jan 13th, 18:00

22, Berlin,
Jan 15th, 11:00

50, Munich,
Jan 15th, 14:00

42, Munich,
Jan 16th, 16:00

6, Cologne,
Jan 17th, 18:00



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

basic problem formulation
input:

• known supplies/demands of empty freight cars (103 − 104)

• both of different types at different locations and times

• timetable (time constraints, costs)

22, Berlin,
Jan 11th, 10:00

10, Berlin,
Jan 12th, 10:00

42, Munich,
Jan 16th, 13:00

56, Cologne,
Jan 13th, 18:00

22, Berlin,
Jan 15th, 11:00

50, Munich,
Jan 15th, 14:00

42, Munich,
Jan 16th, 16:00

6, Cologne,
Jan 17th, 18:00



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

basic problem formulation
input:

• known supplies/demands of empty freight cars (103 − 104)

• both of different types at different locations and times

• timetable (time constraints, costs)

• type subtitution rules (1:1,1:2)

22, Berlin,
Jan 11th, 10:00

10, Berlin,
Jan 12th, 10:00

42, Munich,
Jan 16th, 13:00

56, Cologne,
Jan 13th, 18:00

22, Berlin,
Jan 15th, 11:00

50, Munich,
Jan 15th, 14:00

42, Munich,
Jan 16th, 16:00

6, Cologne,
Jan 17th, 18:00



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

basic problem formulation
input:

• known supplies/demands of empty freight cars (103 − 104)

• both of different types at different locations and times

• timetable (time constraints, costs)

• type subtitution rules (1:1,1:2)

22, Berlin,
Jan 11th, 10:00

10, Berlin,
Jan 12th, 10:00

42, Munich,
Jan 16th, 13:00

56, Cologne,
Jan 13th, 18:00

22, Berlin,
Jan 15th, 11:00

50, Munich,
Jan 15th, 14:00

42, Munich,
Jan 16th, 16:00

6, Cologne,
Jan 17th, 18:00



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

basic problem formulation
input:

• known supplies/demands of empty freight cars (103 − 104)

• both of different types at different locations and times

• timetable (time constraints, costs)

• type subtitution rules (1:1,1:2)

• side constraints (storage, priority, etc)

22, Berlin,
Jan 11th, 10:00

10, Berlin,
Jan 12th, 10:00

42, Munich,
Jan 16th, 13:00

56, Cologne,
Jan 13th, 18:00

22, Berlin,
Jan 15th, 11:00

50, Munich,
Jan 15th, 14:00

42, Munich,
Jan 16th, 16:00

6, Cologne,
Jan 17th, 18:00



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

basic problem formulation (1)
output: optimal disposition, i.e.

• allocation of all supply to as much demand as possible

22, Berlin,
Jan 11th, 10:00

10, Berlin,
Jan 12th, 10:00

42, Munich,
Jan 16th, 13:00

56, Cologne,
Jan 13th, 18:00

22, Berlin,
Jan 15th, 11:00

50, Munich,
Jan 15th, 14:00

42, Munich,
Jan 16th, 16:00

6, Cologne,
Jan 17th, 18:00



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

basic problem formulation (1)
output: optimal disposition, i.e.

• allocation of all supply to as much demand as possible

• respecting all rules/constraints, integrality

22, Berlin,
Jan 11th, 10:00

10, Berlin,
Jan 12th, 10:00

42, Munich,
Jan 16th, 13:00

56, Cologne,
Jan 13th, 18:00

22, Berlin,
Jan 15th, 11:00

50, Munich,
Jan 15th, 14:00

42, Munich,
Jan 16th, 16:00

6, Cologne,
Jan 17th, 18:00



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

basic problem formulation (1)
output: optimal disposition, i.e.

• allocation of all supply to as much demand as possible

• respecting all rules/constraints, integrality

• minimal costs

22, Berlin,
Jan 11th, 10:00

10, Berlin,
Jan 12th, 10:00

42, Munich,
Jan 16th, 13:00

56, Cologne,
Jan 13th, 18:00

22, Berlin,
Jan 15th, 11:00

50, Munich,
Jan 15th, 14:00

42, Munich,
Jan 16th, 16:00

6, Cologne,
Jan 17th, 18:00



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

basic problem formulation (1)
output: optimal disposition, i.e.

• allocation of all supply to as much demand as possible

• respecting all rules/constraints, integrality

• minimal costs

disposition can ’almost’ be modelled as flow problem.

22, Berlin,
Jan 11th, 10:00

10, Berlin,
Jan 12th, 10:00

42, Munich,
Jan 16th, 13:00

56, Cologne,
Jan 13th, 18:00

22, Berlin,
Jan 15th, 11:00

50, Munich,
Jan 15th, 14:00

42, Munich,
Jan 16th, 16:00

6, Cologne,
Jan 17th, 18:00



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

basic problem formulation (1)
output: optimal disposition, i.e.

• allocation of all supply to as much demand as possible

• respecting all rules/constraints, integrality

• minimal costs

disposition can ’almost’ be modelled as flow problem.

But: some features cannot, e.g. 1:2 substitution

22, Berlin,
Jan 11th, 10:00

10, Berlin,
Jan 12th, 10:00

42, Munich,
Jan 16th, 13:00

56, Cologne,
Jan 13th, 18:00

22, Berlin,
Jan 15th, 11:00

50, Munich,
Jan 15th, 14:00

42, Munich,
Jan 16th, 16:00

6, Cologne,
Jan 17th, 18:00



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

network model N = (V , A) with 1:1 substitution

1

nn supply nodes

n + 1

n + m m demand nodes

norm sink

l storage nodes

n + m + 1

n + m + l

}

}

k } prio

sinks

transit edges: time and type match between supply/demand

model edges

b(n) = sn

b(1) = s1 b(n + 1) = 0

b(n + m + l) = 0

c



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

network model N = (V , A) with 1:1 substitution

1

nn supply nodes

n + 1

n + m m demand nodes

norm sink

l storage nodes

n + m + 1

n + m + l

}

}

k } prio

sinks

transit edges: time and type match between supply/demand

model edges

b(n) = sn

b(1) = s1 b(n + 1) = 0

b(n + m + l) = 0

c

• Obtain disposition as solution of min-cost flow
on N = (V ,A) in polynomial time (e.g. by SSP).



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

network model N = (V , A) with 1:1 substitution

1

nn supply nodes

n + 1

n + m m demand nodes

norm sink

l storage nodes

n + m + 1

n + m + l

}

}

k } prio

sinks

transit edges: time and type match between supply/demand

model edges

b(n) = sn

b(1) = s1 b(n + 1) = 0

b(n + m + l) = 0

c

• Obtain disposition as solution of min-cost flow
on N = (V ,A) in polynomial time (e.g. by SSP).

• All input values integral
⇒ flow solution integral as demanded!



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

1:2 substitution and flow multipliers

Definition (flow f (A) in N = (V , A))

• ∀aij ∈ A : lij ≤ f (aij) ≤ uij

• ∀vi ∈ V :
∑

ali=(vl ,vi )∈A f (ali ) −
∑

aik=(vi ,vk )∈A f (aik) = b(vi )



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

1:2 substitution and flow multipliers

Definition (flow f (A) in N = (V , A))

• ∀aij ∈ A : lij ≤ f (aij) ≤ uij

• ∀vi ∈ V :
∑

ali=(vl ,vi )∈A f (ali ) −
∑

aik=(vi ,vk )∈A f (aik) = b(vi )

1:2 substitution ⇒ Use same model enriched by multipliers:



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

1:2 substitution and flow multipliers

Definition (flow f (A) in N = (V , A))

• ∀aij ∈ A : lij ≤ f (aij) ≤ uij

• ∀vi ∈ V :
∑

ali=(vl ,vi )∈A f (ali ) −
∑

aik=(vi ,vk )∈A f (aik) = b(vi )

1:2 substitution ⇒ Use same model enriched by multipliers:

Definition (flow fm(A) in N = (V , A) with multipliers)

• ∀aij ∈ A : lij ≤ fm(aij) ≤ uij

• ∀vi ∈ V :∑
ali=(vl ,vi )∈A µ(ali )fm(ali) −

∑
aik=(vi ,vk )∈A fm(aik) = b(vi )



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

network model with 1:2 substitution

Example

v w

b(v) = +1 b(w) = −2

µvw = 2

f (v, w) = 1



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

network model with 1:2 substitution

Example

v w

b(v) = +1 b(w) = −2

µvw = 2

f (v, w) = 1

Network N:

1

nn supply nodes

n + 1

n + m m demand nodes

norm sink

l storage nodes

n + m + 1

n + m + l

}

}

} prio

sinks

transit edges: time and type match between supply/demand

model edges

b(n) = sn

b(1) = s1 b(n + 1) = 0

b(n + m + l) = 0

c

k

µuv = 2



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

disposition network
We can model all instances as:

Definition (disposition networks)

• network N = (V = X ∪ Y ,A) is bipartite digraph

• ∀a ∈ A : µa ∈ {1, 2}

• ∀a = (u, v) ∈ A with µ(a) = 2 : u ∈ X , v ∈ Y .

• Every path from a supply to a sink has
either path multiplier 1 or 2.

Definition (path multiplier)

Let path πu1un = u1, u2, . . . , un, then

µ(πu1un) =
n−1∏

i=1

µuiui+1



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

complexity of integral flow

Theorem (S.Sahni,’74)

Integral maximum flow with multipliers is NP-hard.

Proof.
Reduction from subset sum, using general multipliers



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

complexity of integral flow

Theorem (S.Sahni,’74)

Integral maximum flow with multipliers is NP-hard.

Proof.
Reduction from subset sum, using general multipliers

Proof does not hold for multipliers 1 and 2. Problem easier?



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

complexity of integral flow

Theorem (S.Sahni,’74)

Integral maximum flow with multipliers is NP-hard.

Proof.
Reduction from subset sum, using general multipliers

Proof does not hold for multipliers 1 and 2. Problem easier?

No, we can even proof:

Theorem
Integral maximum flow on disposition networks is NP-hard.

Proof.
Reduction from 3SAT by construction of disposition network.



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

halfintegral and fractional solutions

• Integral solution: hard to guarantee.



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

halfintegral and fractional solutions

• Integral solution: hard to guarantee.

• Guarantee certain fractional solutions?



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

halfintegral and fractional solutions

• Integral solution: hard to guarantee.

• Guarantee certain fractional solutions?

• Theorem
Optimal solutions for disposition networks are halfintegral.

Proof.

• Circulation: Extend network N to special circulation.
• Induction: Flow increases only (half)integral on certain arcs.



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

halfintegral and fractional solutions

• Integral solution: hard to guarantee.

• Guarantee certain fractional solutions?

• Theorem
Optimal solutions for disposition networks are halfintegral.

Proof.

• Circulation: Extend network N to special circulation.
• Induction: Flow increases only (half)integral on certain arcs.

• Not in general!



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

halfintegral and fractional solutions

• Integral solution: hard to guarantee.

• Guarantee certain fractional solutions?

• Theorem
Optimal solutions for disposition networks are halfintegral.

Proof.

• Circulation: Extend network N to special circulation.
• Induction: Flow increases only (half)integral on certain arcs.

• Not in general!

• We can construct other instances with 3n nodes and 1
2n

fractional solutions.



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

motivation for modified SSP

We...

• started with simple flow model

• obtained disposition solution by integral
min-cost flow solution with SSP

• introduced flow multipliers for 1:2 substitution

• lost polynomially achievable integral solution

• guaranteed halfintegral solution for disposition network

• want to keep SSP application
(easy incorporation of other side constraints)

⇒ Modify SSP algorithm.



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

original SSP

SSP

1: Init.
2: while (b(s) > 0) and (b(t) < 0) and (∃πst)
3: Find shortest s-t-path πst in N ′

4: Augment max. poss. flow δ along πst

5: Update res. network N ′

6: end while



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

modifying original SSP

3: Find shortest s-t-path πst in N ′



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

modifying original SSP

3: Find shortest s-t-path πst in N ′

With usual path costs c ′(πuv ) =
∑n

i=2 c((i − 1)i):

s t

a

b

µsa = 2

µat =
1

2



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

modifying original SSP

3: Find shortest s-t-path πst in N ′

With usual path costs c ′(πuv ) =
∑n

i=2 c((i − 1)i):

s t

a

b

µsa = 2

µat =
1

2

⇒ Define new path costs with multipliers:

c ′(πuv ) =

n∑

i=2

i−1∏

j=1

µj(j+1) · c((i − 1)i).



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

modifying original SSP

3: Find shortest s-t-path πst in N ′

With usual path costs c ′(πuv ) =
∑n

i=2 c((i − 1)i):

s t

a

b

µsa = 2

µat =
1

2

⇒ Define new path costs with multipliers:

c ′(πuv ) =

n∑

i=2

i−1∏

j=1

µj(j+1) · c((i − 1)i).

Compute with Dijkstra:
Multiplier µi =

∏i−1
j=1 µj(j+1) for each node i .



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

modifying original SSP (1)

4: Augment max. poss. flow δ along πst



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

modifying original SSP (1)

4: Augment max. poss. flow δ along πst

Usual:
δ := min{b(s), b(t),mina=(uv)∈πst

capr (a)}



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

modifying original SSP (1)

4: Augment max. poss. flow δ along πst

Usual:
δ := min{b(s), b(t),mina=(uv)∈πst

capr (a)}

Here:

δm := min{b(s),−
b(t)

µt

,mina=(uv)∈πst

capr (a)

µu

}



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

modifying original SSP (2)

5: Update res. network N ′



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

modifying original SSP (2)

5: Update res. network N ′

In residual network N ′

m for each residual arc a = (u, v):

• capacity cap(ā) = f (a), cost c(ā) = −c(a), flow 0
• µā = 1

µa



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

multiplier SSP

mSSP
1: Init.
2: while (b(s) > 0) and (b(t) < 0) and (∃πst )
3: Find shortest multiplier s-t-path πst in N′

m
4: Augment max. poss. flow δm along πst

5: Update res. network N′

m
6: end while



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

multiplier SSP

mSSP
1: Init.
2: while (b(s) > 0) and (b(t) < 0) and (∃πst )
3: Find shortest multiplier s-t-path πst in N′

m
4: Augment max. poss. flow δm along πst

5: Update res. network N′

m
6: end while

Correctness:
• Analougously to SSP (reduced cost criterium)
• Based on modified path and reduced costs



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

multiplier SSP

mSSP
1: Init.
2: while (b(s) > 0) and (b(t) < 0) and (∃πst )
3: Find shortest multiplier s-t-path πst in N′

m
4: Augment max. poss. flow δm along πst

5: Update res. network N′

m
6: end while

Correctness:
• Analougously to SSP (reduced cost criterium)
• Based on modified path and reduced costs

Running time:
• Generally depends on δm (lower bound?)
• Disposition application: δm ∈ { 1

2 , 1}
⇒ (pseudo)polynomial running time



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

Obtaining an integral disposition solution

Apply simple rounding heuristic:

Rounding
1: while (∃ halfintegral flow f )
3: Find cheapest f from s to t via u

4: if (f = f + 1
2

violates cap(u, t) by at most 1
2
)

5: Round f up and round most expensieve halfintegral s − t-flow f ′ down.
6: else
7: Round f down and round next cheapest halfintegral s − t-flow f ′ up.
8: end while



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

Obtaining an integral disposition solution

Apply simple rounding heuristic:

Rounding
1: while (∃ halfintegral flow f )
3: Find cheapest f from s to t via u

4: if (f = f + 1
2

violates cap(u, t) by at most 1
2
)

5: Round f up and round most expensieve halfintegral s − t-flow f ′ down.
6: else
7: Round f down and round next cheapest halfintegral s − t-flow f ′ up.
8: end while

Remark:
If no flow f ′ can be found in line

5 Decrease rest supply (initial integral supplies!).
7 Increase rest supply.



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

quality of integral solution

The simple heuristic ...
• applies to halfintegral solutions for disposition networks
• ends (in polynomial time) with integral solution and no

capacities violated
• increases total costs by factor of 2 in the worst case



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

quality of integral solution

The simple heuristic ...
• applies to halfintegral solutions for disposition networks
• ends (in polynomial time) with integral solution and no

capacities violated
• increases total costs by factor of 2 in the worst case

But:
Actual flow value of resulting solution can be decreased!



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

quality of integral solution

The simple heuristic ...
• applies to halfintegral solutions for disposition networks
• ends (in polynomial time) with integral solution and no

capacities violated
• increases total costs by factor of 2 in the worst case

But:
Actual flow value of resulting solution can be decreased!

Therefore:
We work on better heuristics...



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

quality of integral solution

The simple heuristic ...
• applies to halfintegral solutions for disposition networks
• ends (in polynomial time) with integral solution and no

capacities violated
• increases total costs by factor of 2 in the worst case

But:
Actual flow value of resulting solution can be decreased!

Therefore:
We work on better heuristics...

...and...
on running time results for the mSSP on general instances.



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

Thank you for your attention!



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

flow with general multipliers

Theorem (S.Sahni,’74)

Integral maximum flow with multipliers is NP-hard.

Reduction from subset sum:
Given an instance
I = [S = {si , 1 ≤ i ≤ r},M] of
subset sum: Demand of −M at t

can be satisfied by an integral flow
⇔ I is solvable (or vice versa).

s t

n1

nr

cap(s, n1) = 1

...

1

...

ni

s1

si

sr

cap(s, ni) = 1

cap(s, nr) = 1



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

flow with multipliers 1 and 2

Theorem
Integral maximum flow with multipliers 1, 2 is NP-hard.

Proof.
Replace ni with subgraph N|ni with
inflow 1, outflow si , only multipliers
1, 2 (binary encoding si).

s t

n1

nr

cap(s, n1) = 1

...

1

...

ni

s1

si

sr

cap(s, ni) = 1

cap(s, nr) = 1

N |ni



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

subgraph N |ni

for si = 31:

2

b1

b2

b3

b4

b5

t

1

2

2

2

ni ni1

2

ni2 ni3

2

1

1

cap(ni1, bj) = 1

cap(ni1, ni2) = 1

cap(ni3, bj) = 1} }
Amplification of one flow unit to zi

units at nodes bj, 1 ≤ j ≤ zi.
Amplification of each flow unit at bj

to the number of units resembling the
valency of bit j.

Binary representation of si



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

flow with multipliers 1 and 2

Theorem
Integral maximum flow in disposition networks is NP-hard.

Reduction:
Given a boolean formula α in CNF with n clauses and m variables
(limited occurance!): Demands can be satisfied by an integral flow
⇔ α is satisfiable.

b(n1) = +1

n1

...

nm

n0

1

n1

1

n1

m

n0

m

b(nm) = +1

...

nc1

ncn

ssat

srest

µn1,n
0
1

= 2

µn1,n
1
1

= 2

µnk,n0
k

= 2

µnk,n1
k

= 2

capnc1,ssat
= 1

capncn,ssat
= 1

b(ssat) = −n

b(srest) = −2m + n



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

flow with multipliers 1 and 2

Theorem
Integral maximum flow in disposition networks is NP-hard.

Reduction:
Given a boolean formula α in CNF with n clauses and m variables
(limited occurance!): Demands can be satisfied by an integral flow
⇔ α is satisfiable.

b(n1) = +1

n1

...

nm

n0

1

n1

1

n1

m

n0

m

b(nm) = +1

...

nc1

ncn

ssat

srest

µn1,n
0
1

= 2

µn1,n
1
1

= 2

µnk,n0
k

= 2

µnk,n1
k

= 2

capnc1,ssat
= 1

capncn,ssat
= 1

b(ssat) = −n

b(srest) = −2m + n



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

flow with multipliers 1 and 2

Theorem
Integral maximum flow in disposition networks is NP-hard.

Reduction:
Given a boolean formula α in CNF with n clauses and m variables
(limited occurance!): Demands can be satisfied by an integral flow
with cost 2m · M − n ⇔ α is satisfiable.

b(n1) = +1

n1

...

nm

n0

1

n1

1

n1

m

n0

m

b(nm) = +1

...

nc1

ncn

ssat

srest

µn1,n
0
1

= 2

µn1,n
1
1

= 2

µnk,n0
k

= 2

µnk,n1
k

= 2

capnc1,ssat
= 1

capncn,ssat
= 1

b(ssat) = −n

b(srest) = −2m + n

costnc1,srest
= M

costncm,srest
= M



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

fractional solution

c = 1, µ = 2

c = 1, µ = 1

+1 −1

c = 1, µ = 2

+1 −1

c = 1, µ = 1

c = 1, µ = 2

+1

−1

+1 −1

+1 −1

+1 −1

f =
1

2

f =
1

2

f =
1

4

f =
3

4

f =
1

8

c = 1, µ = 2

−2
n

+ 1

−1

c = 1, µ = 2
+1

c = 1, µ = 2

−2
n
− 1

−1

f = 1 −
1

2n

f =
1

2n

f = 2
n−1

−

1

2

l = 1

l = 2

l =
n
3

l = 3 +1



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

halfintegral solution

Theorem
Optimal solutions for disposition networks are halfintegral.



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

halfintegral solution

Theorem
Optimal solutions for disposition networks are halfintegral.

Proof.
Extend network N to circulation with only unit gain cycles.

1 1

1

2

2

s t

1

1

1

1

1

1

2

2

s1

t

1

1

1

s2

1

1

1

1

2

2

s1

t

1

1

1

s2

1 1

t1

1

2

t2



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

halfintegral solution

Theorem
Optimal solutions for disposition networks are halfintegral.

Proof.
Induction: Flow increases only halfintegral on red-green and
green-green arcs and integral on red-red and green-red arcs.

1 1

1

2

2

s t

1

1

1

1

1

1

2

2

s1

t

1

1

1

s2

1

1

1

1

2

2

s1

t

1

1

1

s2

1 1

t1

1

2

t2


	A freight car disposition problem
	Complexity of integral flow with multipliers 1,2
	Instances with fractional vs. halfintegral solutions
	A modified SSP algorithm
	Obtaining an integral solution

