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Complexity of integral flow with multipliers 1,2

Instances with fractional vs. halfintegral solutions
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• known supplies/demands of empty freight cars (103 − 104)
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6, Cologne,
Jan 17th, 18:00
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basic problem formulation
input:

• known supplies/demands of empty freight cars (103 − 104)

• both of different types at different locations and times

• timetable (time constraints, costs)

• type subtitution rules (1:1,1:2)

• side constraints (storage, priority, etc)

22, Berlin,
Jan 11th, 10:00

10, Berlin,
Jan 12th, 10:00

42, Munich,
Jan 16th, 13:00

56, Cologne,
Jan 13th, 18:00

22, Berlin,
Jan 15th, 11:00
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Jan 15th, 14:00

42, Munich,
Jan 16th, 16:00
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Jan 17th, 18:00



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

basic problem formulation (1)
output: optimal disposition, i.e.

• allocation of all supply to as much demand as possible
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basic problem formulation (1)
output: optimal disposition, i.e.
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basic problem formulation (1)
output: optimal disposition, i.e.

• allocation of all supply to as much demand as possible

• respecting all rules/constraints, integrality

• minimal costs
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basic problem formulation (1)
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disposition can ’almost’ be modelled as flow problem.
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basic problem formulation (1)
output: optimal disposition, i.e.

• allocation of all supply to as much demand as possible

• respecting all rules/constraints, integrality

• minimal costs

disposition can ’almost’ be modelled as flow problem.

But: some features cannot, e.g. 1:2 substitution

22, Berlin,
Jan 11th, 10:00

10, Berlin,
Jan 12th, 10:00

42, Munich,
Jan 16th, 13:00

56, Cologne,
Jan 13th, 18:00

22, Berlin,
Jan 15th, 11:00
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Jan 15th, 14:00
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Jan 16th, 16:00

6, Cologne,
Jan 17th, 18:00
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network model N = (V , A) with 1:1 substitution

1

nn supply nodes

n + 1

n + m m demand nodes

norm sink

l storage nodes

n + m + 1

n + m + l

}

}

k } prio

sinks

transit edges: time and type match between supply/demand

model edges

b(n) = sn

b(1) = s1 b(n + 1) = 0

b(n + m + l) = 0

c
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on N = (V ,A) in polynomial time (e.g. by SSP).
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network model N = (V , A) with 1:1 substitution

1

nn supply nodes

n + 1

n + m m demand nodes

norm sink

l storage nodes

n + m + 1

n + m + l

}

}

k } prio

sinks

transit edges: time and type match between supply/demand

model edges

b(n) = sn

b(1) = s1 b(n + 1) = 0

b(n + m + l) = 0

c

• Obtain disposition as solution of min-cost flow
on N = (V ,A) in polynomial time (e.g. by SSP).

• All input values integral
⇒ flow solution integral as demanded!
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1:2 substitution and flow multipliers

Definition (flow f (A) in N = (V , A))

• ∀aij ∈ A : lij ≤ f (aij) ≤ uij

• ∀vi ∈ V :
∑

ali=(vl ,vi )∈A f (ali ) −
∑

aik=(vi ,vk )∈A f (aik) = b(vi )
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1:2 substitution and flow multipliers

Definition (flow f (A) in N = (V , A))

• ∀aij ∈ A : lij ≤ f (aij) ≤ uij

• ∀vi ∈ V :
∑

ali=(vl ,vi )∈A f (ali ) −
∑

aik=(vi ,vk )∈A f (aik) = b(vi )

1:2 substitution ⇒ Use same model enriched by multipliers:

Definition (flow fm(A) in N = (V , A) with multipliers)

• ∀aij ∈ A : lij ≤ fm(aij) ≤ uij

• ∀vi ∈ V :∑
ali=(vl ,vi )∈A µ(ali )fm(ali) −

∑
aik=(vi ,vk )∈A fm(aik) = b(vi )
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network model with 1:2 substitution

Example

v w

b(v) = +1 b(w) = −2

µvw = 2

f (v, w) = 1
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network model with 1:2 substitution

Example

v w

b(v) = +1 b(w) = −2

µvw = 2

f (v, w) = 1

Network N:

1

nn supply nodes

n + 1

n + m m demand nodes

norm sink

l storage nodes

n + m + 1

n + m + l

}

}

} prio

sinks

transit edges: time and type match between supply/demand

model edges

b(n) = sn

b(1) = s1 b(n + 1) = 0

b(n + m + l) = 0

c

k

µuv = 2
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disposition network
We can model all instances as:

Definition (disposition networks)

• network N = (V = X ∪ Y ,A) is bipartite digraph

• ∀a ∈ A : µa ∈ {1, 2}

• ∀a = (u, v) ∈ A with µ(a) = 2 : u ∈ X , v ∈ Y .

• Every path from a supply to a sink has
either path multiplier 1 or 2.

Definition (path multiplier)

Let path πu1un = u1, u2, . . . , un, then

µ(πu1un) =
n−1∏

i=1

µuiui+1
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complexity of integral flow

Theorem (S.Sahni,’74)

Integral maximum flow with multipliers is NP-hard.

Proof.
Reduction from subset sum, using general multipliers
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complexity of integral flow

Theorem (S.Sahni,’74)

Integral maximum flow with multipliers is NP-hard.

Proof.
Reduction from subset sum, using general multipliers

Proof does not hold for multipliers 1 and 2. Problem easier?

No, we can even proof:

Theorem
Integral maximum flow on disposition networks is NP-hard.

Proof.
Reduction from 3SAT by construction of disposition network.
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• Integral solution: hard to guarantee.
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halfintegral and fractional solutions

• Integral solution: hard to guarantee.

• Guarantee certain fractional solutions?

• Theorem
Optimal solutions for disposition networks are halfintegral.

Proof.

• Circulation: Extend network N to special circulation.
• Induction: Flow increases only (half)integral on certain arcs.

• Not in general!

• We can construct other instances with 3n nodes and 1
2n

fractional solutions.
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motivation for modified SSP

We...

• started with simple flow model

• obtained disposition solution by integral
min-cost flow solution with SSP

• introduced flow multipliers for 1:2 substitution

• lost polynomially achievable integral solution

• guaranteed halfintegral solution for disposition network

• want to keep SSP application
(easy incorporation of other side constraints)

⇒ Modify SSP algorithm.
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original SSP

SSP

1: Init.
2: while (b(s) > 0) and (b(t) < 0) and (∃πst)
3: Find shortest s-t-path πst in N ′

4: Augment max. poss. flow δ along πst

5: Update res. network N ′

6: end while
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With usual path costs c ′(πuv ) =
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i=2 c((i − 1)i):

s t
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b

µsa = 2

µat =
1

2
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c ′(πuv ) =

n∑

i=2

i−1∏

j=1
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modifying original SSP

3: Find shortest s-t-path πst in N ′

With usual path costs c ′(πuv ) =
∑n

i=2 c((i − 1)i):

s t

a

b

µsa = 2

µat =
1

2

⇒ Define new path costs with multipliers:

c ′(πuv ) =

n∑

i=2

i−1∏

j=1

µj(j+1) · c((i − 1)i).

Compute with Dijkstra:
Multiplier µi =

∏i−1
j=1 µj(j+1) for each node i .
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capr (a)}
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modifying original SSP (1)

4: Augment max. poss. flow δ along πst

Usual:
δ := min{b(s), b(t),mina=(uv)∈πst

capr (a)}

Here:

δm := min{b(s),−
b(t)

µt

,mina=(uv)∈πst

capr (a)

µu

}
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modifying original SSP (2)

5: Update res. network N ′
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modifying original SSP (2)

5: Update res. network N ′

In residual network N ′

m for each residual arc a = (u, v):

• capacity cap(ā) = f (a), cost c(ā) = −c(a), flow 0
• µā = 1

µa
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multiplier SSP

mSSP
1: Init.
2: while (b(s) > 0) and (b(t) < 0) and (∃πst )
3: Find shortest multiplier s-t-path πst in N′

m
4: Augment max. poss. flow δm along πst

5: Update res. network N′

m
6: end while
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mSSP
1: Init.
2: while (b(s) > 0) and (b(t) < 0) and (∃πst )
3: Find shortest multiplier s-t-path πst in N′

m
4: Augment max. poss. flow δm along πst

5: Update res. network N′

m
6: end while

Correctness:
• Analougously to SSP (reduced cost criterium)
• Based on modified path and reduced costs
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multiplier SSP

mSSP
1: Init.
2: while (b(s) > 0) and (b(t) < 0) and (∃πst )
3: Find shortest multiplier s-t-path πst in N′

m
4: Augment max. poss. flow δm along πst

5: Update res. network N′

m
6: end while

Correctness:
• Analougously to SSP (reduced cost criterium)
• Based on modified path and reduced costs

Running time:
• Generally depends on δm (lower bound?)
• Disposition application: δm ∈ { 1

2 , 1}
⇒ (pseudo)polynomial running time
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Obtaining an integral disposition solution

Apply simple rounding heuristic:

Rounding
1: while (∃ halfintegral flow f )
3: Find cheapest f from s to t via u

4: if (f = f + 1
2

violates cap(u, t) by at most 1
2
)

5: Round f up and round most expensieve halfintegral s − t-flow f ′ down.
6: else
7: Round f down and round next cheapest halfintegral s − t-flow f ′ up.
8: end while



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

Obtaining an integral disposition solution

Apply simple rounding heuristic:

Rounding
1: while (∃ halfintegral flow f )
3: Find cheapest f from s to t via u

4: if (f = f + 1
2

violates cap(u, t) by at most 1
2
)

5: Round f up and round most expensieve halfintegral s − t-flow f ′ down.
6: else
7: Round f down and round next cheapest halfintegral s − t-flow f ′ up.
8: end while

Remark:
If no flow f ′ can be found in line

5 Decrease rest supply (initial integral supplies!).
7 Increase rest supply.
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quality of integral solution

The simple heuristic ...
• applies to halfintegral solutions for disposition networks
• ends (in polynomial time) with integral solution and no

capacities violated
• increases total costs by factor of 2 in the worst case
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quality of integral solution

The simple heuristic ...
• applies to halfintegral solutions for disposition networks
• ends (in polynomial time) with integral solution and no

capacities violated
• increases total costs by factor of 2 in the worst case

But:
Actual flow value of resulting solution can be decreased!

Therefore:
We work on better heuristics...

...and...
on running time results for the mSSP on general instances.
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Thank you for your attention!



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

flow with general multipliers

Theorem (S.Sahni,’74)

Integral maximum flow with multipliers is NP-hard.

Reduction from subset sum:
Given an instance
I = [S = {si , 1 ≤ i ≤ r},M] of
subset sum: Demand of −M at t

can be satisfied by an integral flow
⇔ I is solvable (or vice versa).

s t

n1

nr

cap(s, n1) = 1

...

1

...

ni

s1

si

sr

cap(s, ni) = 1

cap(s, nr) = 1
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flow with multipliers 1 and 2

Theorem
Integral maximum flow with multipliers 1, 2 is NP-hard.

Proof.
Replace ni with subgraph N|ni with
inflow 1, outflow si , only multipliers
1, 2 (binary encoding si).

s t

n1

nr

cap(s, n1) = 1

...

1

...

ni

s1

si

sr

cap(s, ni) = 1

cap(s, nr) = 1

N |ni
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subgraph N |ni

for si = 31:

2

b1

b2

b3

b4

b5

t

1

2

2

2

ni ni1

2

ni2 ni3

2

1

1

cap(ni1, bj) = 1

cap(ni1, ni2) = 1

cap(ni3, bj) = 1} }
Amplification of one flow unit to zi

units at nodes bj, 1 ≤ j ≤ zi.
Amplification of each flow unit at bj

to the number of units resembling the
valency of bit j.

Binary representation of si
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flow with multipliers 1 and 2

Theorem
Integral maximum flow in disposition networks is NP-hard.

Reduction:
Given a boolean formula α in CNF with n clauses and m variables
(limited occurance!): Demands can be satisfied by an integral flow
⇔ α is satisfiable.

b(n1) = +1

n1

...

nm

n0

1

n1

1

n1

m

n0

m

b(nm) = +1

...

nc1

ncn

ssat

srest

µn1,n
0
1

= 2

µn1,n
1
1

= 2

µnk,n0
k

= 2

µnk,n1
k

= 2

capnc1,ssat
= 1

capncn,ssat
= 1

b(ssat) = −n

b(srest) = −2m + n
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flow with multipliers 1 and 2

Theorem
Integral maximum flow in disposition networks is NP-hard.

Reduction:
Given a boolean formula α in CNF with n clauses and m variables
(limited occurance!): Demands can be satisfied by an integral flow
⇔ α is satisfiable.

b(n1) = +1

n1

...

nm

n0

1

n1

1

n1

m

n0

m

b(nm) = +1

...

nc1

ncn

ssat

srest

µn1,n
0
1

= 2

µn1,n
1
1

= 2

µnk,n0
k

= 2

µnk,n1
k

= 2

capnc1,ssat
= 1

capncn,ssat
= 1

b(ssat) = −n

b(srest) = −2m + n
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flow with multipliers 1 and 2

Theorem
Integral maximum flow in disposition networks is NP-hard.

Reduction:
Given a boolean formula α in CNF with n clauses and m variables
(limited occurance!): Demands can be satisfied by an integral flow
with cost 2m · M − n ⇔ α is satisfiable.

b(n1) = +1

n1

...

nm

n0

1

n1

1

n1

m

n0

m

b(nm) = +1

...

nc1

ncn

ssat

srest

µn1,n
0
1

= 2

µn1,n
1
1

= 2

µnk,n0
k

= 2

µnk,n1
k

= 2

capnc1,ssat
= 1

capncn,ssat
= 1

b(ssat) = −n

b(srest) = −2m + n

costnc1,srest
= M

costncm,srest
= M



disposition complexity fractional vs. halfintegral mSSP algorithm heuristic

fractional solution

c = 1, µ = 2

c = 1, µ = 1

+1 −1

c = 1, µ = 2

+1 −1

c = 1, µ = 1

c = 1, µ = 2

+1

−1

+1 −1

+1 −1

+1 −1

f =
1

2

f =
1

2

f =
1

4

f =
3

4

f =
1

8

c = 1, µ = 2

−2
n

+ 1

−1

c = 1, µ = 2
+1

c = 1, µ = 2

−2
n
− 1

−1

f = 1 −
1

2n

f =
1

2n

f = 2
n−1

−

1

2

l = 1

l = 2

l =
n
3

l = 3 +1
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halfintegral solution

Theorem
Optimal solutions for disposition networks are halfintegral.
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halfintegral solution

Theorem
Optimal solutions for disposition networks are halfintegral.

Proof.
Extend network N to circulation with only unit gain cycles.
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halfintegral solution

Theorem
Optimal solutions for disposition networks are halfintegral.

Proof.
Induction: Flow increases only halfintegral on red-green and
green-green arcs and integral on red-red and green-red arcs.
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