disposition

complexity

fractional vs. halfintegral

mSSP algorithm

heuristic

Successive Shortest Path (SSP) Algorithm with Multipliers

Birgit Engels

ZAIK University of Cologne

13th Combinatorial Optimization Workshop January 11th-17th, Aussois

Motivated by a joint project of:

A freight car disposition problem

Complexity of integral flow with multipliers 1,2

Instances with fractional vs. halfintegral solutions

A modified SSP algorithm

Obtaining an integral solution

input:

• known supplies/demands of empty freight cars $(10^3 - 10^4)$

demand

input:

- known supplies/demands of empty freight cars $(10^3 10^4)$
- both of different *types* at different *locations* and *times*

22, Berlin, Jan 11th, 10:00

10. Berlin. Jan 12th, 10:00

42, Munich, Jan 16th. 13:00

56, Cologne, Jan 13th, 18:00

22, Berlin, Jan 15th, 11:00

50. Munich. Jan 15th, 14:00

42, Munich, Jan 16th. 16:00

input:

- known supplies/demands of empty freight cars $(10^3 10^4)$
- both of different types at different locations and times
- timetable (time constraints, costs)

22, Berlin, Jan 11th, 10:00

10, Berlin, Jan 12th, 10:00

42, Munich, Jan 16th, 13:00

56, Cologne, Jan 13th, 18:00

nnetz Fernverkehr all

Die Bahn DB

22, Berlin, Jan 15th, 11:00

50, Munich, Jan 15th, 14:00

42, Munich, Jan 16th, 16:00

input:

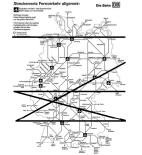
- known supplies/demands of empty freight cars $(10^3 10^4)$
- both of different types at different locations and times •
- timetable (time constraints, costs)
- type subtitution rules (1:1,1:2)

22, Berlin, Jan 11th, 10:00

10. Berlin. Jan 12th, 10:00

42, Munich, Jan 16th. 13:00

56, Cologne, Jan 13th, 18:00



22, Berlin, Jan 15th, 11:00

50. Munich. Jan 15th, 14:00

42, Munich, Jan 16th. 16:00

input:

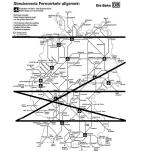
- known supplies/demands of empty freight cars $(10^3 10^4)$
- both of different types at different locations and times •
- timetable (time constraints, costs)
- type subtitution rules (1:1,1:2)

22, Berlin, Jan 11th, 10:00

10. Berlin. Jan 12th, 10:00

42, Munich, Jan 16th. 13:00

56, Cologne, Jan 13th, 18:00



22, Berlin, Jan 15th, 11:00

50. Munich. Jan 15th, 14:00

42, Munich, Jan 16th. 16:00

input:

- known supplies/demands of empty freight cars $(10^3 10^4)$
- both of different *types* at different *locations* and *times*
- timetable (time constraints, costs)
- type subtitution rules (1:1,1:2)
- side constraints (storage, priority, etc)

22, Berlin, Jan 11th, 10:00

10. Berlin. Jan 12th, 10:00

42, Munich, Jan 16th. 13:00

56, Cologne, Jan 13th, 18:00

22, Berlin, Jan 15th, 11:00

50. Munich. Jan 15th, 14:00

42, Munich, Jan 16th. 16:00

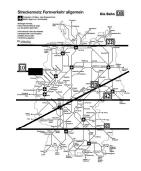
output: optimal disposition, i.e.

• allocation of all supply to as much demand as possible

10, Berlin, Jan 12th, 10:00

42, Munich, Jan 16th, 13:00

56, Cologne, Jan 13th, 18:00



22, Berlin, Jan 15th, 11:00

50, Munich, Jan 15th, 14:00

42, Munich, Jan 16th, 16:00

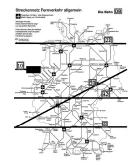
output: optimal disposition, i.e.

- allocation of all supply to as much demand as possible
- respecting all rules/constraints, integrality

10, Berlin, Jan 12th, 10:00

42, Munich, Jan 16th, 13:00

56, Cologne, Jan 13th, 18:00



22, Berlin, Jan 15th, 11:00

50, Munich, Jan 15th, 14:00

42, Munich, Jan 16th, 16:00

output: optimal disposition, i.e.

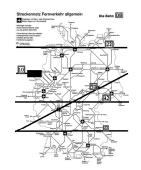
- allocation of all supply to as much demand as possible
- respecting all rules/constraints, integrality
- minimal costs

22, Berlin, Jan 11th, 10:00

10, Berlin, Jan 12th, 10:00

42, Munich, Jan 16th, 13:00

56, Cologne, Jan 13th, 18:00



22, Berlin, Jan 15th, 11:00

50, Munich, Jan 15th, 14:00

42, Munich, Jan 16th, 16:00

output: optimal disposition, i.e.

- allocation of all supply to as much demand as possible
- respecting all rules/constraints, integrality
- minimal costs

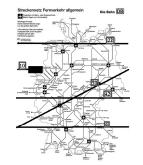
disposition can 'almost' be modelled as flow problem.

22, Berlin, Jan 11th, 10:00

10, Berlin, Jan 12th, 10:00

42, Munich, Jan 16th, 13:00

56, Cologne, Jan 13th, 18:00



22, Berlin, Jan 15th, 11:00

50, Munich, Jan 15th, 14:00

42, Munich, Jan 16th, 16:00

output: optimal disposition, i.e.

- allocation of all supply to as much demand as possible
- respecting all rules/constraints, integrality
- minimal costs

disposition can 'almost' be modelled as flow problem.

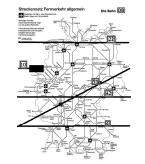
But: some features cannot, e.g. 1:2 substitution

22, Berlin, Jan 11th, 10:00

10, Berlin, Jan 12th, 10:00

42, Munich, Jan 16th, 13:00

56, Cologne, Jan 13th, 18:00

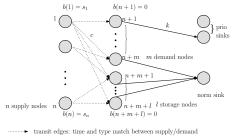


22, Berlin, Jan 15th, 11:00

50, Munich, Jan 15th, 14:00

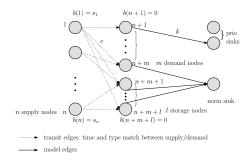
42, Munich, Jan 16th, 16:00

network model N = (V, A) with 1:1 substitution



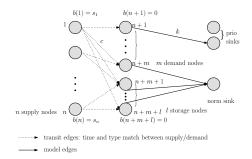
model edges

network model N = (V, A) with 1:1 substitution



 Obtain disposition as solution of min-cost flow on N = (V, A) in polynomial time (e.g. by SSP).

network model N = (V, A) with 1:1 substitution



- Obtain disposition as solution of min-cost flow on N = (V, A) in polynomial time (e.g. by SSP).
- All input values integral
 - \Rightarrow flow solution integral as demanded!

1:2 substitution and flow multipliers

Definition (flow f(A) in N = (V, A))

•
$$\forall a_{ij} \in A : I_{ij} \le f(a_{ij}) \le u_{ij}$$

• $\forall v_i \in V : \sum_{a_{ii}=(v_i, v_i) \in A} f(a_{ii}) - \sum_{a_{ik}=(v_i, v_k) \in A} f(a_{ik}) = b(v_i)$

1:2 substitution and flow multipliers

Definition (flow f(A) in N = (V, A))

•
$$\forall a_{ij} \in A : I_{ij} \leq f(a_{ij}) \leq u_{ij}$$

• $\forall v_i \in V : \sum_{a_{ii}=(v_i, v_i) \in A} f(a_{ii}) - \sum_{a_{ik}=(v_i, v_k) \in A} f(a_{ik}) = b(v_i)$

1:2 substitution \Rightarrow Use same model enriched by multipliers:

1:2 substitution and flow multipliers

Definition (flow f(A) in N = (V, A))

•
$$\forall a_{ij} \in A : I_{ij} \le f(a_{ij}) \le u_{ij}$$

• $\forall v_i \in V : \sum_{a_{ii}=(v_i, v_i) \in A} f(a_{ii}) - \sum_{a_{ik}=(v_i, v_k) \in A} f(a_{ik}) = b(v_i)$

1:2 substitution \Rightarrow Use same model enriched by multipliers:

Definition (flow $f_m(A)$ in N = (V, A) with multipliers)

•
$$\forall a_{ij} \in A : I_{ij} \leq f_m(a_{ij}) \leq u_{ij}$$

• $\forall v_i \in V :$
 $\sum_{a_{li}=(v_l, v_i) \in A} \mu(a_{li}) f_m(a_{li}) - \sum_{a_{ik}=(v_i, v_k) \in A} f_m(a_{ik}) = b(v_i)$

heuristic

network model with 1:2 substitution

Example

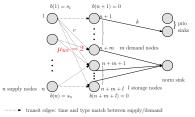
b(v) = +1 b(w) = -2

heuristic

network model with 1:2 substitution

Example

Network N:



----- model edges

disposition

disposition network

We can model all instances as:

Definition (disposition networks)

• network $N = (V = X \cup Y, A)$ is bipartite digraph

•
$$\forall a \in A : \mu_a \in \{1, 2\}$$

- $\forall a = (u, v) \in A \text{ with } \mu(a) = 2 : u \in X, v \in Y.$
- Every path from a supply to a sink has *either* path multiplier 1 or 2.

Definition (path multiplier)

Let path $\pi_{u_1u_n} = u_1, u_2, \ldots, u_n$, then

$$\mu(\pi_{u_1u_n}) = \prod_{i=1}^{n-1} \mu_{u_iu_{i+1}}$$

complexity of integral flow

Theorem (S.Sahni,'74)

Integral maximum flow with multipliers is NP-hard.

Proof.

Reduction from subset sum, using general multipliers

complexity of integral flow

Theorem (S.Sahni,'74)

Integral maximum flow with multipliers is NP-hard.

Proof.

Reduction from subset sum, using general multipliers

Proof does not hold for multipliers 1 and 2. Problem easier?

complexity of integral flow

Theorem (S.Sahni,'74)

Integral maximum flow with multipliers is NP-hard.

Proof.

Reduction from subset sum, using general multipliers

Proof does not hold for multipliers 1 and 2. Problem easier? No, we can even proof:

Theorem

Integral maximum flow on disposition networks is NP-hard.

Proof.

Reduction from 3SAT by construction of disposition network.

heuristic

halfintegral and fractional solutions

• Integral solution: hard to guarantee.

- Integral solution: hard to guarantee.
- Guarantee certain fractional solutions?

- Integral solution: hard to guarantee.
- Guarantee certain fractional solutions?
- Theorem

Optimal solutions for disposition networks are halfintegral.

Proof.

- Circulation: Extend network N to special circulation.
- Induction: Flow increases only (half)integral on certain arcs.

- Integral solution: hard to guarantee.
- Guarantee certain fractional solutions?
- Theorem

Optimal solutions for disposition networks are halfintegral.

Proof.

- Circulation: Extend network N to special circulation.
- Induction: Flow increases only (half)integral on certain arcs.
- Not in general!

- Integral solution: hard to guarantee.
- Guarantee certain fractional solutions?
- Theorem

Optimal solutions for disposition networks are halfintegral.

Proof.

- Circulation: Extend network N to special circulation.
- Induction: Flow increases only (half)integral on certain arcs.
- Not in general!
- We can construct other instances with 3n nodes and $\frac{1}{2^n}$ fractional solutions.

motivation for modified SSP

We...

- started with simple flow model
- obtained disposition solution by integral min-cost flow solution with SSP
- introduced flow multipliers for 1:2 substitution
- lost polynomially achievable integral solution
- guaranteed halfintegral solution for disposition network
- want to keep SSP application (easy incorporation of other side constraints)
- \Rightarrow Modify SSP algorithm.

disposition

heuristic

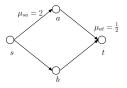
original SSP

	SSP	
1:	Init.	
2:	while	$(b(s)>0)$ and $(b(t)<0)$ and $(\exists \pi_{st})$
3:		Find shortest <i>s</i> - <i>t</i> -path π_{st} in <i>N</i> '
4:		Augment max. poss. flow δ along π_{st}
5:		Update res. network N'
6:	end	while

3: Find shortest *s*-*t*-path π_{st} in *N*'

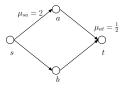
3: Find shortest *s*-*t*-path π_{st} in N'

With usual path costs $c'(\pi_{uv}) = \sum_{i=2}^{n} c((i-1)i)$:



Find shortest *s*-*t*-path π_{st} in N'

With usual path costs $c'(\pi_{uv}) = \sum_{i=2}^{n} c((i-1)i)$:

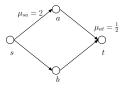


 \Rightarrow Define new path costs with multipliers:

$$c'(\pi_{uv}) = \sum_{i=2}^{n} \prod_{j=1}^{i-1} \mu_{j(j+1)} \cdot c((i-1)i).$$

Find shortest *s*-*t*-path π_{st} in N'

With usual path costs $c'(\pi_{uv}) = \sum_{i=2}^{n} c((i-1)i)$:



 \Rightarrow Define new path costs with multipliers:

$$c'(\pi_{uv}) = \sum_{i=2}^{n} \prod_{j=1}^{i-1} \mu_{j(j+1)} \cdot c((i-1)i).$$

Compute with Dijkstra: Multiplier $\mu_i = \prod_{j=1}^{i-1} \mu_{j(j+1)}$ for each node *i*.

complexity

fractional vs. halfintegral

mSSP algorithm

heuristic

modifying original SSP (1)

4: Augment max. poss. flow δ along π_{st}

complexity fractional vs. halfi

mSSP algorithm

heuristic

modifying original SSP (1)

4: Augment max. poss. flow δ along π_{st}

Usual:

$$\delta := \min\{b(s), b(t), \min_{a=(uv)\in\pi_{st}} cap_r(a)\}$$

modifying original SSP (1)

4: Augment max. poss. flow δ along π_{st}

Usual:

$$\delta := \min\{b(s), b(t), \min_{a=(uv)\in\pi_{st}} cap_r(a)\}$$

Here:

$$\delta_m := \min\{b(s), -\frac{b(t)}{\mu_t}, \min_{a=(uv)\in\pi_{st}}\frac{cap_r(a)}{\mu_u}\}$$

complexity

ractional vs. halfintegral

mSSP algorithm

heuristic

modifying original SSP (2)

5: Update res. network N'

modifying original SSP (2)

5: Update res. network N'

In residual network N'_m for each residual arc $\overline{a} = (u, v)$:

heuristic

multiplier SSP

	mSSP	
1:	Init.	
2:	while	$(b(s) > 0)$ and $(b(t) < 0)$ and $(\exists \pi_{st})$
3:		Find shortest multiplier s-t-path π_{st} in N'_m
4:		Augment max. poss. flow δ_m along π_{st}
5:		Update res. network N'_m
6:	end	while

heuristic

multiplier SSP

	mSSP	
1:	Init.	
2:	while	$(b(s) > 0)$ and $(b(t) < 0)$ and $(\exists \pi_{st})$
3:		Find shortest multiplier s-t-path π_{st} in N'_m
4:		Augment max. poss. flow δ_m along π_{st}
5:		Update res. network N'_m
6:	end	while

Correctness:

- Analougously to SSP (reduced cost criterium)
- Based on modified path and reduced costs

heuristic

multiplier SSP

	mSSP	
1:	Init.	
2:	while	$(b(s) > 0)$ and $(b(t) < 0)$ and $(\exists \pi_{st})$
3:		Find shortest multiplier s-t-path π_{st} in N'_m
4:		Augment max. poss. flow δ_m along π_{st}
5:		Update res. network N'_m
6:	end	while

Correctness:

- Analougously to SSP (reduced cost criterium)
- Based on modified path and reduced costs

Running time:

- Generally depends on δ_m (lower bound?)
- Disposition application: δ_m ∈ {1/2, 1}
 ⇒ (pseudo)polynomial running time

Obtaining an integral disposition solution

Apply simple rounding heuristic:

	Rounding		
1:	while	Ε)	halfintegral flow f)
3:		Find	cheapest f from s to t via u
4:		if	$(f = f + \frac{1}{2} \text{ violates } cap(u, t) \text{ by at most } \frac{1}{2})$
5:			Round f up and round most expensieve half integral $s - t$ -flow f' down.
6:		else	
7:			Round f down and round next cheapest halfintegral $s - t$ -flow f' up.
8:	end	while	

Obtaining an integral disposition solution

Apply simple rounding heuristic:

	Rounding		
1:	while	Ξ	halfintegral flow f)
3:		Find	cheapest f from s to t via u
4:		if	$(f = f + \frac{1}{2} \text{ violates } cap(u, t) \text{ by at most } \frac{1}{2})$
5:			Round f up and round most expensieve halfintegral $s - t$ -flow f' down.
6:		else	
7:			Round f down and round next cheapest halfintegral $s - t$ -flow f' up.
8:	end	while	

Remark:

If no flow f' can be found in line

- 5 Decrease rest supply (initial integral supplies!).
- 7 Increase rest supply.

The simple heuristic ...

- applies to halfintegral solutions for disposition networks
- ends (in polynomial time) with integral solution and no capacities violated
- increases total costs by factor of 2 in the worst case

The simple heuristic ...

- applies to halfintegral solutions for disposition networks
- ends (in polynomial time) with integral solution and no capacities violated
- increases total costs by factor of 2 in the worst case

But:

Actual flow value of resulting solution can be decreased!

The simple heuristic ...

- applies to halfintegral solutions for disposition networks
- ends (in polynomial time) with integral solution and no capacities violated
- increases total costs by factor of 2 in the worst case

But:

Actual flow value of resulting solution can be decreased!

Therefore:

We work on better heuristics...

The simple heuristic ...

- applies to halfintegral solutions for disposition networks
- ends (in polynomial time) with integral solution and no capacities violated
- increases total costs by factor of 2 in the worst case

But:

Actual flow value of resulting solution can be decreased!

Therefore:

We work on better heuristics...

...and...

on running time results for the mSSP on general instances.

complexity

fractional vs. halfintegral

mSSP algorithr

heuristic

Thank you for your attention!

heuristic

flow with general multipliers

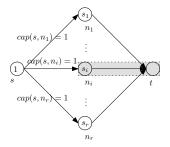
Theorem (S.Sahni,'74)

Integral maximum flow with multipliers is NP-hard.

Reduction from subset sum:

Given an instance

 $I = [S = \{s_i, 1 \le i \le r\}, M]$ of subset sum: Demand of -M at tcan be satisfied by an integral flow $\Leftrightarrow I$ is solvable (or vice versa).



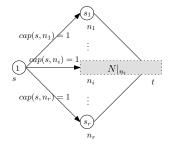
flow with multipliers 1 and 2

Theorem

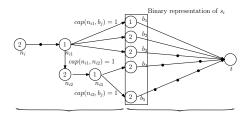
Integral maximum flow with multipliers 1,2 is NP-hard.

Proof.

Replace n_i with subgraph $N|n_i$ with inflow 1, outflow s_i , only multipliers 1, 2 (binary encoding s_i).



for $s_i = 31$:



Amplification of one flow unit to z_i Amplification of each flow unit at b_i units at nodes $b_j, 1 \le j \le z_i$.

to the number of units resembling the valency of bit j.

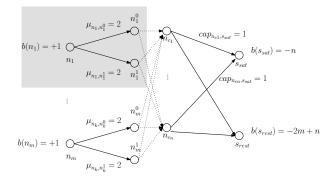
flow with multipliers 1 and 2 $\,$

Theorem

Integral maximum flow in disposition networks is NP-hard.

Reduction:

Given a boolean formula α in CNF with *n* clauses and *m* variables (limited occurance!): Demands can be satisfied by an integral flow $\Leftrightarrow \alpha$ is satisfiable.



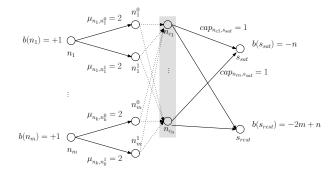
flow with multipliers 1 and 2 $\,$

Theorem

Integral maximum flow in disposition networks is NP-hard.

Reduction:

Given a boolean formula α in CNF with *n* clauses and *m* variables (limited occurance!): Demands can be satisfied by an integral flow $\Leftrightarrow \alpha$ is satisfiable.



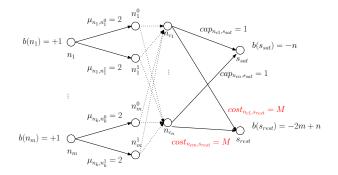
flow with multipliers 1 and 2 $\,$

Theorem

Integral maximum flow in disposition networks is NP-hard.

Reduction:

Given a boolean formula α in CNF with *n* clauses and *m* variables (limited occurance!): Demands can be satisfied by an integral flow with cost $2m \cdot M - n \Leftrightarrow \alpha$ is satisfiable.



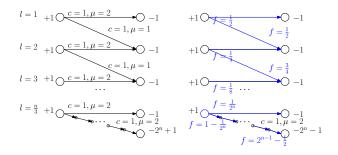
complexity

fractional vs. halfintegra

mSSP algorithm

heuristic

fractional solution



complexity

fractional vs. halfintegra

mSSP algorithm

heuristic

halfintegral solution

Theorem Optimal solutions for disposition networks are halfintegral.

heuristic

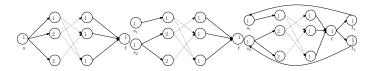
halfintegral solution

Theorem

Optimal solutions for disposition networks are halfintegral.

Proof.

Extend network N to circulation with only unit gain cycles.



halfintegral solution

Theorem

Optimal solutions for disposition networks are halfintegral.

Proof.

Induction: Flow increases only halfintegral on red-green and green-green arcs and integral on red-red and green-red arcs.

