A class of matrices with the Edmonds-Johnson property

Alberto Del Pia, Antoine Musitelli, Giacomo Zambelli

Departimento di Matematica Pura ed Applicata Università di Padova

January 13, 2009

- - E - - E

- 4 同 6 4 日 6 4 日 6

Definition

The *strong Chvátal rank* of a rational matrix A is the smallest number t such that the polyhedron defined by the system $b \le Ax \le c, l \le x \le u$ has Chvátal rank at most t for all integral vectors b, c, l, u.

Matrices with strong Chvátal rank 0 are exactly the totally unimodular matrices.

Definition

Matrices with strong Chvátal rank at most 1 are said to have the *Edmonds-Johnson property*.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

There are two main known classes of matrices with the Edmonds-Johnson property:

Theorem (Edmonds and Johnson, '73)

If $A = (\alpha_{ij})$ is an integral matrix such that $\sum_{i} |\alpha_{ij}| \le 2$ for each column index *j*, then *A* has the Edmonds-Johnson property.

Introduction Known classes A conjecture by Gerards and Schrijver

Theorem (Gerards and Schrijver, '86)

An integral matrix (α_{ij}) that satisfies $\sum_{j} |\alpha_{ij}| \le 2$ for each row index *i*, has the Edmonds-Johnson property if and only if it cannot be transformed to $M(K_4)$ by a series of the following operations:

 deleting or permuting rows or columns, or multiplying them by -1,

• replacing matrix
$$\begin{pmatrix} 1 & g \\ f & D \end{pmatrix}$$
 by the matrix $D - fg$.

$$\mathcal{M}(\mathcal{K}_4) = \left(egin{array}{ccccc} 1 & 1 & 0 & 0 \ 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 1 \ 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 1 \ 0 & 0 & 1 & 1 \end{array}
ight)$$

A B > A B >

同 ト イ ヨ ト イ ヨ ト

The matrices in these two classes are *totally half-modular*, i.e. integral matrices such that for each nonsingular square submatrix B, $2B^{-1}$ is integral.

If a matrix A is totally half-modular, then the irredundant Chvátal-Gomory inequalities for the system $b \le Ax \le c, l \le x \le u$ are obtained with Chvátal-Gomory multipliers that have entries in $\{0, \frac{1}{2}\}$, for all integral vectors b, c, l, u.

Observation

The class of totally half-modular matrices with the Edmonds-Johnson property is closed under the following operations:

- (i) deleting or permuting rows or columns, or multiplying them by -1,
- (ii) dividing by 2 an even row,

(iii) pivoting on a 1 entry, i.e. replacing matrix $\begin{pmatrix} 1 & g \\ f & D \end{pmatrix}$ by the

$$matrix \left(\begin{array}{cc} -1 & g \\ f & D - fg \end{array} \right)$$

Definition

We say that a matrix B is a *minor* of A if it arises from A by a series of operations (i)-(iii).

Alberto Del Pia, Antoine Musitelli, Giacomo Zambelli A class of matrices with the Edmonds-Johnson property

The Edmonds-Johnson property A new class from bidirected graphs	Introduction Known classes A conjecture by Gerards and Schrijver
A new class from bidirected graphs	A conjecture by Gerards and Schrijver

Conjecture (Gerards and Schrijver)

A totally half-modular matrix has the Edmonds-Johnson property, if and only if it has no minor equal to A₄ or A₃. $A_4 = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 1 \end{pmatrix}$ $A_3 = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 2 \\ 1 & 0 & 2 \end{pmatrix}$

The two cited classes of matrices with the Edmonds-Johnson property are particular cases of Gerards and Schrijver's conjecture.

Theorem

A totally half-modular matrix obtained from a $\{0, \pm 1\}$ -matrix with at most two nonzero entries per column, by multiplying by 2 some columns, has the Edmonds-Johnson property if and only if it does not contain A_3 as a minor.

- Let A be obtained from a totally unimodular matrix with two nonzero elements per column, by multiplying by 2 some columns, and let b be an integral vector. Deciding if a system Ax = b, x ≥ 0 has an integral solution is NP-complete. (Conforti, Di Summa, Eisenbrand, Wolsey, '08).
- This is a nontrivial class of matrices where appears the matrix A₃.
- Our result reduces to the one of Edmonds and Johnson when $\sum_{i} |\alpha_{ij}| \le 2$ for each column index *j*.

(4月) (日) (日)

Example +++

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

A *bidirected graph* G is a triple (V, E, σ) where:

- (V, E) is an undirected graph,
- σ is a signing of (V, E), i.e. a map that assigns to each e ∈ E, v ∈ e a sign σ_{v,e} ∈ {+1, -1}.
 For convenience, we define σ_{v,e} = 0 if v ∉ e.

Definition

The sign matrix of a bidirected graph G is the $|V| \times |E|$ matrix $\Sigma(G) = (\sigma_{v,e})$.

Example

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Definition

Given a bidirected graph G and a subset F of its edges, we denote with A(G, F) the matrix obtained from $\Sigma(G)$ by multiplying by 2 the columns corresponding to the edges in F.

Alberto Del Pia, Antoine Musitelli, Giacomo Zambelli A class of matrices with the Edmonds-Johnson property

Definition

A cycle C is *even* if the number of edges in C with the same sign in its endnodes is even, and is *odd* otherwise.

Observation

A(G, F) is totally half-modular if and only if (G, F) satisfies the Cycles condition: the cycles of G containing edges in F are even.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Switch sign on a node v:

Corresponds to multiplying by -1 the row of A(G, F) corresponding to v.

/⊒ > < ∃ >

Switch sign on an edge e:

Corresponds to multiplying by -1 the column of A(G, F) corresponding to e.

/□ ▶ < 글 ▶ < 글

Delete a node v:

Corresponds to deleting the row of A(G, F) corresponding to v.

A 10

→ 3 → 4 3

Delete an edge e:

Corresponds to deleting the column of A(G, F) corresponding to e.

/□ ▶ < 글 ▶ < 글

Contract a nonloop edge $e = vw \in E \setminus F$:

Corresponds to pivoting the element in position (v, e) of A(G, F), and removing the row corresponding to v and the column corresponding to e. Contract a nonloop edge $e = vw \in F$, where v is incident only with edges in F:

Corresponds to dividing by 2 the row of A(G, F) corresponding to v, pivoting the element in position (v, e), and removing the row corresponding to v and the column corresponding to e.

Definition

Given a bidirected graph $G = (V, E, \sigma)$, and $F \subseteq E$, we call a pair (G', F') a *minor* of (G, F) if it arises from (G, F) by a series of the above operations.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Edmonds-Johnson property A new class from bidirected graphs Our result Algorithmic aspects

Thus $A(G_4)$ does not have the Edmonds-Johnson property.

・ 同 ト ・ ヨ ト ・ ヨ ト

The following is our result.

Theorem

Given a pair (G, F) that satisfies the cycles condition, A(G, F) has the Edmonds-Johnson property if and only if (G, F) does not contain G_4 as a minor.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let \mathscr{C} be the family of pairs (G, F) such that:

- (G, F) satisfies the cycles condition,
- (G, F) does not contain G_4 as a minor.

Observation

To prove our theorem we only need to show that the system

$$\begin{array}{l} A(G,F) \, x = c \\ x \geq 0, \end{array}$$

has Chvátal rank at most 1 for every $(G, F) \in \mathscr{C}$ and every integral c.

- 4 同 6 4 日 6 4 日 6

Observation

Let (G, F) be a pair satisfying the cycles condition. Any irredundant nontrivial Chvátal inequality for

 $\begin{array}{l} A(G,F) \, x = c \\ x \geq 0, \end{array}$

is equivalent to

 $x(\delta(U) \setminus F) \ge 1,$

where:

- $U \subseteq V(G)$ is connected,
- c(U) is odd,
- there is no nontrivial partition U_1, U_2 of U such that all the edges between U_1 and U_2 are in F.

We will refer to these inequalities as odd-cut inequalities.

The Edmonds-Johnson property A new class from bidirected graphs Our result Algorithmic aspects

Example

Theorem

If $(G, F) \in \mathscr{C}$, then the polyhedron defined by the system

$$\begin{array}{l} A(G,F) \, x = c \\ x \geq 0, \end{array}$$

and all the odd-cut inequalities is integral.

Alberto Del Pia, Antoine Musitelli, Giacomo Zambelli A class of matrices with the Edmonds-Johnson property

・ロト ・四ト ・ヨト ・ヨト

By the ellipsoid algorithm, for each pair $(G, F) \in \mathscr{C}$, one can minimize in polynomial time any linear function over the integer hull of $b \leq A(G, F)x \leq c$, $l \leq x \leq u$, for all integral vectors b, c, l, u.

Open question:

Can we check in polynomial time if a pair (G, F) contains the pair G_4 as a minor?

伺 ト イ ヨ ト イ ヨ ト