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Set of client nodes
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Set of candidate intermediate facilities
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Set of candidate high level facilities
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Applications

• In many telecommunication network design problems two different
kinds of devices (facilities) must be located

• IP networks (Chamberland, 2007):

• access nodes (clients)
• edge and core (facilities)

• Fiber to the home networks (Malucelli and Sircar, 2007)

• user houses (clients)
• cabinets and central offices (facilities)

• we consider the problem in which clients are connected to facilities
through double stars
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Worth studying

It is worth studying because ...

• arises from a practical application

• quite general two-level optimization problem

• particular matrix structure during decomposition ...
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Compact model

min
∑

i∈I ,j∈J

dijxij+
∑

j∈J

cjyj+
∑

j∈J,k∈K

ljkwjk+
∑

k∈K

gkzk (1)

s.t.
∑

i∈I

aixij ≤ byj ∀ j ∈ J (2)

∑

j∈J

xij ≥ 1 ∀ i ∈ I (3)

yj ≤
∑

k∈K

wjk ∀ j ∈ J (4)

∑

k∈K

bwjk ≤ Bzk∀ k ∈ K (5)

and binary variables.
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Multifacility case

• Intermediate facilities must be equipped with only one device each;

• for each open facility the device must be chosen among a given set
T ;

• for each available device a capacity bt and an installation cost ft is
given, which do not depend on the site.

• economies of scale: bt = 2 · bt−1 and ft < 2 · ft−1
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Heuristic idea

• Heuristic approach:

• solve the problem considering only one device, the one with the
highest capacity

• select, for each facility opened in the optimal solution, the cheapest
feasible device to be installed

• The obtained solution is quite far from the optimum: average gap of
about 13%, and up to about 51%

=⇒ we need to consider devices in optimizing
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Compact model

How the model changes:

• opening variable yj is replaced with yjt , where t ∈ T , which is equal
to 1 if j is open and equipped with device t;

• variable wjk is replaced with wjkt , where t ∈ T , which is equal to 1 if
j , equipped with device t, is assigned to k;

• the following constraint is added

∑

t∈T

yjt ≤ 1,∀j ∈ J.

• For the multifacility case solving the model is more time consuming
(871 s. on the average and up to 6600 s. in the worst case)
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Compact model

min
∑

i∈I ,j∈J

dijxij +
∑

j∈J

(cj )yj +
∑

j∈J,k∈K

ljkwjk +
∑

k∈K

gkzk

s.t.
∑

i∈I

aixij ≤ b yj ∀ j ∈ J

∑

j∈J

xij ≥ 1 ∀ i ∈ I

yj ≤
∑

k∈K

wjk ∀ j ∈ J

∑

k∈K

b wjk ≤ Bzk ∀ k ∈ K

and binary varables.
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Compact model

min
∑

i∈I ,j∈J

dijxij +
∑

j∈J,t∈T

(cj + ft)yjt+
∑

j∈J,k∈K ,t∈T

ljkwjkt +
∑

k∈K

gkzk

s.t.
∑

i∈I

aixij ≤
∑

t∈T

btyjt ∀ j ∈ J

∑

j∈J

xij ≥ 1 ∀ i ∈ I

yjt ≤
∑

k∈K

wjkt ∀ j ∈ J ∀t ∈ T

∑

k∈K ,t∈T

btwjkt ≤ Bzk ∀ k ∈ K

∑

k∈K ,t∈T

wjkt ≤ 1 ∀j ∈ J

and binary varables.
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Master problem

min
∑

j∈J,t∈T ,s∈Sjt

Csvs+
∑

j∈J,k∈K ,t∈T

ljkwjkt +
∑

k∈K

gkzk

s.t.
∑

j∈J,t∈T ,s∈Sjt

uisvs ≥ 1 ∀ i ∈ I (σi )

∑

s∈Sjt

vs ≤
∑

k∈K

wjkt ∀ j ∈ J, t ∈ T (µjt)

∑

j∈J,t∈T

btwjkt ≤ B zk ∀ k ∈ K

∑

k∈K ,t∈T

wjkt ≤ 1 ∀ j ∈ J

Where
• Sjt : set of clusters which can be assigned to intermediate facility j

equipped with device t;
• Cs = cj + ft +

∑

i∈s dij : cost of assigning cluster s to facility j ,
equipped with device t
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Pricing problem

• Given a facility j equipped with device t, build a feasible cluster with
negative reduced cost.

• Is there a cluster s encoded by binary coefficients uis , such that

z = cj + ft −µjt +

{

max
∑

i∈I

(dij − σi ) uis :
∑

i∈I

aiuis ≤ bt

}

≤ 0? (6)

• A 0–1 knapsack problem has to be solved for each candidate facility
j and for each device t.

• Pricing is however to be solved only for each candidate intermediate
facility through dynamical programming which provides solution for
all the devices.
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Discretization

• Weigth bt → bt/b1 (number of capacity modules on device t)

• Capacity B → ⌊B/b1⌋ (number of modules which can be assigned
to a high level facility)

• Let Q = {q ∈ Z : 1 ≤ q ≤ ⌊B/b1⌋}

• Substitute variable zk with variable z
q
k (open facility k and serve q

modules)
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Master problem

min
∑

j∈J,t∈T ,s∈Sjt

Csvs+
∑

j∈J,k∈K ,t∈T

ljkwjkt +
∑

k∈K

gk zk

∑

j∈J,t∈T ,s∈Sjt

uisvs ≥ 1 ∀ i ∈ I

∑

s∈Sjt

vs ≤
∑

k∈K

wjkt ∀ j ∈ J, t ∈ T

∑

j∈J,t∈T

bt wjkt ≤ B zk ∀ k ∈ K

∑

k∈K ,t∈T

wjkt ≤ 1 ∀ j ∈ J
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Master problem

min
∑

j∈J,t∈T ,s∈Sjt

Csvs+
∑

j∈J,k∈K ,t∈T

ljkwjkt +
∑

k∈K

gk

∑

q∈Q

z
q
k

∑

j∈J,t∈T ,s∈Sjt

uisvs ≥ 1 ∀ i ∈ I

∑

s∈Sjt

vs ≤
∑

k∈K

wjkt ∀ j ∈ J, t ∈ T

∑

j∈J,t∈T

bt/b1 wjkt ≤ ⌊B/b1⌋
∑

q∈Q

z
q
k ∀ k ∈ K

∑

k∈K ,t∈T

wjkt ≤ 1 ∀ j ∈ J

∑

q∈Q

z
q
k ≤ 1 ∀ k ∈ K
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Valid inequalities

We strenghtened the compact part of the formulation with valid
inequalities:
for all j ∈ J and k ∈ K

wjkt ≤
∑

q∈Q

z
q
k .

Moreover,

• Let N = ⌈
P

i∈I ai

b1
⌉ (min number of capacity modules).

• Then
∑

k∈K

∑

q∈Q

qz
q
k ≥ N

• Hence, for all p ∈ Q,

∑

k∈K

∑

q∈Q

⌈
q

p
⌉zq

k ≥ ⌈
N

p
⌉



Introduction Multifacility version Implementation Computational results

VLSN search
Adapted from Ahuja, Scaparra, Scutellà, Pallottino ’05
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Branching

During branch-and-bound

• Binary branch on zk vars

• Binary branch on yj vars

• Partitioning constraint branch on xij vars

• Partitioning constraint branch on ykt vars

• Partitioning constraint branch on wjkt vars
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Implementation

Implementation:

• C++ implementation

• SCIP as branch-and-cut-and-price framework

• Adaptation of MINKNAP to solve 0-1 KPs (Pisinger ’95)

• Automatic cut generation on the root node (compact part)

• Adaptation of the stabilization technique proposed in Uchoa et al
(CG2k8)

• Embedded general purporse heuristics + ad-hoc VLSN search

• Ad-hoc 5-level branching
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Computational results

Centrino Core2 3GHz processors, tests on 71 instances from facility
location problems with up to 200 nodes (Holmberg et al). Compare

• Dual bounds:

• continuous relaxation
• lower bound obtained by CPLEX 11 at the root node
• lower bound produced by Column Generation (CG)
• lower bound produced by CG, strenghtened by valid inequalities

(CRG)
• lower bound produced by CG, with valid inequalities on the

discretized compact part

• Exact solution (time limit 2 hours).

• CPLEX 11
• BCP
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Results

Dual bounds:

• CPLEX bound between 0.66% and 29.20%, avg. 11.40% in 7.78s

• CRG bound between 0.36% and 27.77%, avg. 10.22% in 25.61s

• CG + discretization bound between 0.00% and 33.82%, avg. 5.99%
in 19.44s (avg. improvement 5.71%, worse than CRG in only 4
instances)

Exact solution:

• CPLEX 11 solved 43 instances

• BCP solved 55 instances + 6 below 0.02% + 2 below 0.15%
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Conclusions

Conclusions:

• Extended model for first location level + discretized model for
second location level works best, providing tight dual bounds

• VLSN search is useful for improving heuristic solutions, providing
good primal bounds

• CRG embedded in branch-and-bound is able to solve a large part of
the considered instances to proven optimality

To do:

• Solve numerical troubles

• New benchmarks

• Cuts on the extended part of the model
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