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Warmstarting

The use of information from a solved problem
to accelerate the (re-)optimization of a similar problem

1 Same structure and size, similar data

changes of right-hand side
changes of objective function
changes of real-life data in financial and engineering applications
(e.g., variation in market prices and/or product specifications)

2 Modified structure, more or less (of) the same data

series of LP/SDP relaxations for combinatorial optimization
removal of variables and/or constraints in branch-and-cut schemes

Results presented today are for LP, but an important motivation is to
work towards improved warmstarting of interior-point methods (IPMs)
for solving SDP relaxations of combinatorial optimization problems.
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Illustration: Inherent Problem of IPM Warmstarts

Re-optimization after right-hand side perturbation

The active set is unchanged⇒ Simplex warmstart in 1 iteration
The interior has changed⇒ effective IPM warmstart not
straightforward
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Linear Programming in Primal-Dual Standard Form

(LP-P) min cT x
s.t. Ax = b

x ≥ 0

(LP-D) max bT y

s.t. AT y + s = c
s ≥ 0

First-Order (Karush-Kuhn-Tucker) Optimality Conditions

Ax = b (x ≥ 0) (Primal Feasibility)

AT y + s = c (s ≥ 0) (Dual Feasibility)
xisi = µ for all i (Complementarity)

System has a unique solution for every µ > 0 (“central path”)
Central path converges to an optimal solution as µ→ 0
KKT system is nonlinear⇒ linearize & solve by Newton’s method

Basic Idea of Interior-Point Methods: apply Newton’s with decreasing µ
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Infeasible Primal-Dual Path-Following IPM

1 Initialize (x0 > 0, y0, s0 > 0), let σ ∈ [0,1), and set k = 0.

2 If
∥∥Axk − b

∥∥ ≤ εb,
∥∥AT yk + sk − c

∥∥ ≤ εc , (xk )T (sk )/n ≤ εd , stop.

3 Set µk = σ(xk )T (sk )/n and solve for Newton direction A 0 0
0 AT I

Sk 0 X k

∆x
∆y
∆s

 = −

 Axk − b
AT yk + sk − c
X kSke − µke


4 Compute step length αk such that

xk + αk ∆x > 0 and sk + αk ∆s > 0.

5 Take step (xk+1, yk+1, sk+1) = (xk , yk , sk ) + αk (∆x ,∆y ,∆s).
6 Increase k by 1 and go to Step 2.
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Warmstarting in Linear Optimization

min (c◦ + ∆c)T x
s.t. (A◦ + ∆A)x = b◦ + ∆b

x ≥ 0

max (b◦ + ∆b)T y

s.t. (A◦ + ∆A)T y + s = c◦ + ∆c
s ≥ 0

Let (x◦ ≥ 0, y◦, s◦ ≥ 0) be optimal for the initial problem

A◦x◦ = b◦ A◦T y◦ + s◦ = c◦ X ◦S◦e = 0

then (x◦, y◦, s◦) is typically infeasible for the perturbed problem

r◦b = b − Ax◦ = (b◦ + ∆b)− (A◦ + ∆A)x◦ = ∆b −∆Ax◦

r◦c = c − AT y◦ − s = (c◦ + ∆c)− (A◦ + ∆A)T y◦ − s◦ = ∆c −∆AT y◦

Good news: Feasibility can be handled by infeasible algorithm
Bad news: Initial interiority must be achieved by alternative means
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Warmstarting IPM (I): Adjustment of Initial Iterate

Newton adjustment (Yildirim & Wright 2002, Gondzio & Grothey 2003)

A∆x = r◦b
AT ∆y + ∆s = r◦c

S◦∆x + X ◦∆s = 0

(Weighted) least-squares adjustments (Yildirim & Wright 2002)

min
∆x
‖Σ∆x‖ s.t. A(x◦ + ∆x) = b, x◦ + ∆x ≥ 0

min
∆y ,∆s

‖Λ∆s‖ s.t. AT (y◦ + ∆y) + (s◦ + ∆s) = c, s◦ + ∆s ≥ 0
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Warmstarting IPM (II): Shifted-Barrier Approaches

Shifted-barrier problem (Freund 1991)

min cT x − ε
∑

log(xi + εhi) s.t. Ax = b, x + εh > 0

Infeasible-start shifted-barrier problem (Freund 1996)

min (c + ε(AT y◦ + s◦ − c))T x − µε
∑

log(xi)

s.t. Ax = b + ε(Ax◦ − b), x > 0

Exact primal-dual penalty-method approach (Benson & Shanno 2007)

min cT x + dT ξ

s.t. Ax = b
0 ≤ x + ξ ≤ u
ξ ≥ 0

max bT y − uTψ

s.t. AT y + s = c
− ψ ≤ s ≤ d
ψ ≥ 0
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New: Primal-Dual Slack Approach

Key Idea: Introduce slack variables for the non-negativity constraints in
both primal and dual:

min cT x
s.t. Ax = b

x − ξ = 0
ξ ≥ 0

max bT y

s.t. AT y + s = c
s − ψ = 0
ψ ≥ 0

Good news: Penalty parameters are no longer needed
Bad news: x (and s) are now free variables
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Theoretical (“Nice”) Complexity Results

Iteration complexity and worst-case iteration count

Comparable computational cost per iteration as standard form LP
Detailed analysis yields same worst-case iteration bound as IIPM

Initialization schemes for theoretical analysis

Standard form: (x0, y0, s0) = (ζe,0, ζe) where ζ ≥ ‖(x∗, s∗)‖∞
Slacked form: (x0, y0, s0, ξ0, ψ0) = (x◦, y◦, s◦, ζe, ζe)

Iteration complexity of slacked-form IIPM (Engau, A., Vannelli 2008)

O(n) log

(
max

{∥∥r0
b

∥∥
εb

,

∥∥r0
c
∥∥

εc
,

∥∥r0
x
∥∥

εx
,

∥∥r0
s
∥∥

εs
,
ζ2n
εd

})

Easy to show that max
{∥∥r0

x
∥∥ , ∥∥r0

s
∥∥} ≤ ζ2n for ζ ≥ ‖(x◦, s◦,1)‖∞
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Practical (“Messy”) Issue: Slack Initialization

In theory: (ξ0, ψ0) = (ζe, ζe) where ζ ≥ ‖(x∗, s∗)‖∞ = ‖(ξ∗, ψ∗)‖∞
In practice: (ξ0, ψ0) = (x◦, s◦) + (r0

x , r0
s ) such that

Ξ0Ψ0e = X ◦S◦e + X ◦R0
s e + R0

x S◦e + R0
x R0

s e

is well-balanced and similar in magnitude to ρ =
∥∥(r◦b , r

◦
c ,1)

∥∥
∞.

Also: Add primal-dual indicator to detect variables that are sufficiently
away from zero, and do not need to be “slacked”.
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Warmstarting for LP: Perturbation Scheme

(described by Benson & Shanno 2007 and Gondzio & Grothey 2008)
Test set: (perturbable) Netlib LP problems of size m + n ≤ 1000
“LP” solver: SDPT3 (freely available, easy supply of initial points)
with supplemental “free-variable” code by Anjos & Burer 2008

Perturbation: 10% or 20 (random) entries of A, b, c on average

∆ci =

{
εδ if c◦i = 0
εδc◦i otherwise

where ε ∈ [−1,1], δ ∈ {0.1,0.01,0.001}

(same scheme for b and A but preserving sparsity structure of A)
Performance measures: perturbation levels, number of iterations

WCR = Warm-to-Coldstart-Ratio =
number of warmstart iterations
number of coldstart iterations
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Computational Results: LP Perturbations

(Feasible) Perturbations WCR Statistics
∆ δ Pert (#) avg stdv min med max
b 0.001 15.3 46 0.23 0.14 0.06 0.17 0.63
b 0.01 14.9 42 0.28 0.14 0.11 0.25 0.65
b 0.1 15.0 40 0.39 0.18 0.15 0.36 0.82
c 0.001 17.9 62 0.24 0.13 0.08 0.20 0.64
c 0.01 18.5 59 0.33 0.17 0.11 0.28 0.90
c 0.1 18.0 54 0.44 0.22 0.13 0.40 1.13
A 0.001 19.2 60 0.32 0.20 0.13 0.25 0.87
A 0.01 19.9 58 0.41 0.25 0.14 0.37 1.74
A 0.1 19.9 58 0.58 0.27 0.21 0.56 1.75
Abc 0.001 52.8 46 0.33 0.15 0.12 0.29 0.64
Abc 0.01 51.6 42 0.46 0.17 0.13 0.45 0.83
Abc 0.1 51.5 36 0.74 0.30 0.38 0.68 1.66
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Warmstarting for Combinatorial Optimization: Max-cut

Let xij =

{
1 if vertices i and j lie on opposite sides of the cut
0 if vertices i and j lie on the same side of the cut

max
∑

i<j
cijxij

subject to

xij + xik + xjk ≤ 2
xij − xik − xjk ≤ 0
− xij + xik − xjk ≤ 0
− xij − xik + xjk ≤ 0

 for 1 ≤ i < j < k ≤ n

xij ∈ {0,1} for 1 ≤ i < j ≤ n

Relax binary constraint to box constraint 0 ≤ xij ≤ 1
Drop triangle inequalities and sequentially add constraints as cuts
Solve resulting relaxations from cold/warmstart to compute WCR
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Computational Results:
Max-cut on complete graphs

Set of 100 randomly generated instances, up to 10 rounds of cuts

Problem size # cuts avg sdev min med max
30 1 0.62 0.04 0.54 0.63 0.76
30 10 0.77 0.06 0.62 0.76 0.87
30 100 1.03 0.04 0.96 1.03 1.15
60 1 0.60 0.05 0.54 0.60 0.81
60 10 0.76 0.08 0.59 0.78 0.92
60 100 0.92 0.06 0.75 0.93 1.14

100 1 0.59 0.04 0.52 0.56 0.72
100 10 0.75 0.09 0.59 0.76 0.90
100 100 0.79 0.06 0.68 0.80 0.85
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Computational Results:
Max-cut on toroidal square grid graphs

Set of 100 randomly generated instances, up to 10 rounds of cuts

Problem size # cuts avg sdev min med max
36 1 0.73 0.10 0.44 0.75 0.86
36 10 0.71 0.09 0.50 0.75 0.86
36 100 0.69 0.06 0.44 0.67 0.75
64 1 0.73 0.05 0.50 0.75 0.86
64 10 0.73 0.04 0.50 0.75 0.86
64 100 0.68 0.06 0.38 0.67 0.75

100 1 0.70 0.07 0.44 0.75 0.75
100 10 0.70 0.07 0.40 0.67 0.75
100 100 0.66 0.06 0.40 0.67 0.75
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Summary and Outlook

Take-home message: The proposed new warmstarting scheme

is supported by theoretical and preliminary computational results
is applicable for data perturbations and new variables and/or
constraints
consistently achieves a reduction of the iteration count by ≥ 30%
in comparison with coldstart; competitive with other approaches
on perturbed Netlib problems.

Where we are going from here:

improve benchmarking possibilities via collection of a meaningful
set of LP test problems
carefully compare, and explore combinations, with other
warmstarting approaches
extend from LP to NLP (and particularly to SOCP and SDP)
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For Jack Edmonds (and everyone else):

Paper is available on my webpage:
http://mfa.research.uwaterloo.ca

On the same page, there is also an online addendum with all the
data files & detailed computational results.
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