#### Higher dimensional split closures and lattice point free sets

Kent Andersen. Joint work with Q. Louveaux and R. Weismantel

Institute for Mathematical Optimization, University of Magdeburg, Germany, email: andersen@mail.math.uni-magdeburg.de

♦ Lattice point free convex sets

- Lattice point free convex sets
- ♦ Split bodies and cutting planes

- > Lattice point free convex sets
- ♦ Split bodies and cutting planes
- Structure of relaxations from split bodies

- Lattice point free convex sets
- ♦ Split bodies and cutting planes
- Structure of relaxations from split bodies
- ♦ Size measures of split bodies

- Lattice point free convex sets
- Split bodies and cutting planes
- Structure of relaxations from split bodies
- ♦ Size measures of split bodies
- Higher dimensional split closures

- Lattice point free convex sets
- Split bodies and cutting planes
- Structure of relaxations from split bodies
- ♦ Size measures of split bodies
- ♦ Higher dimensional split closures
- Output Polyhedrality of higher dimensional split closures

A convex set L is lattice point free, iff L has no integer points in its interior.

- A convex set L is lattice point free, iff L has no integer points in its interior.
- $\Diamond$  If L is maximal wrt. inclusion then L is a polyhedron.

- A convex set *L* is lattice point free, iff *L* has no integer points in its interior.
- $\Diamond$  If L is maximal wrt. inclusion then L is a polyhedron.
- $\diamond$  If *L* is a maximal lattice point free rational polyhedron, then *L* is full dimensional.

- A convex set *L* is lattice point free, iff *L* has no integer points in its interior.
- $\Diamond$  If *L* is maximal wrt. inclusion then *L* is a polyhedron.
- $\Diamond$  If *L* is a maximal lattice point free rational polyhedron, then *L* is full dimensional.
- We call maximal lattice point free rational polyhedra for split bodies.

- A convex set *L* is lattice point free, iff *L* has no integer points in its interior.
- $\Diamond$  If L is maximal wrt. inclusion then L is a polyhedron.
- $\diamond$  If *L* is a maximal lattice point free rational polyhedron, then *L* is full dimensional.
- We call maximal lattice point free rational polyhedra for split bodies.
- ♦ The "standard" split body:  $\{x \in \mathbb{R}^n : \pi_0 \le \pi^T x \le \pi_0 + 1\}$ , where  $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$ .

- A convex set *L* is lattice point free, iff *L* has no integer points in its interior.
- $\Diamond$  If L is maximal wrt. inclusion then L is a polyhedron.
- $\diamond$  If *L* is a maximal lattice point free rational polyhedron, then *L* is full dimensional.
- We call maximal lattice point free rational polyhedra for split bodies.
- ♦ The "standard" split body:  $\{x \in \mathbb{R}^n : \pi_0 \le \pi^T x \le \pi_0 + 1\}$ , where  $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$ .
- Standard split bodies can be used for deriving:
  - $\Rightarrow$  Mixed integer Gomory cuts (Gomory).
  - ⇒ Mixed integer rounding cuts (Nemhauser and Wolsey).

#### **Split bodies : Examples**



#### **Split bodies : Examples**



Higher dimensional split closures and lattice point free sets - p

Let P be an LP relaxation of an integer set  $P_I$ .

 $\Diamond$ 

- Let P be an LP relaxation of an integer set  $P_I$ .
- A split body *L* gives a stronger relaxation of  $P_I$  $R(L, P) := \operatorname{conv}(\{x \in P : x \notin \operatorname{int}(L)\}).$

 $\diamond$ 

- Let P be an LP relaxation of an integer set  $P_I$ .
- ♦ A split body *L* gives a stronger relaxation of  $P_I$  $R(L, P) := conv(\{x \in P : x \notin int(L)\}).$

- Let P be an LP relaxation of an integer set  $P_I$ .
- ♦ A split body *L* gives a stronger relaxation of  $P_I$  $R(L, P) := conv(\{x \in P : x \notin int(L)\}).$

 $\diamond$ 

- If *P* is mixed with  $(x, y) \in \mathbb{Z}^p \times \mathbb{R}^q$ , we extend *L* to  $\tilde{L} := \{(x, y) \in \mathbb{R}^{p+q} : x \in L\}$
- $\Diamond$  If *L* is a standard split set, then valid inequalities for R(L, P) are called split cuts.

- Let P be an LP relaxation of an integer set  $P_I$ .
- ♦ A split body *L* gives a stronger relaxation of  $P_I$  $R(L, P) := conv(\{x \in P : x \notin int(L)\}).$ 
  - If *P* is mixed with  $(x, y) \in \mathbb{Z}^p \times \mathbb{R}^q$ , we extend *L* to  $\tilde{L} := \{(x, y) \in \mathbb{R}^{p+q} : x \in L\}$
- $\Diamond$  If *L* is a standard split set, then valid inequalities for R(L, P) are called split cuts.
- $\diamond$  We show (for a general split body *L*):

 $\diamond$ 

- $\Rightarrow$  R(L, P) is a rational polyhedron.
- $\Rightarrow$   $R(L, P) \neq P$  iff  $v \in int(L)$  for some vertex v of P.

- Let P be an LP relaxation of an integer set  $P_I$ .
- ♦ A split body *L* gives a stronger relaxation of  $P_I$  $R(L, P) := conv(\{x \in P : x \notin int(L)\}).$ 
  - If *P* is mixed with  $(x, y) \in \mathbb{Z}^p \times \mathbb{R}^q$ , we extend *L* to  $\tilde{L} := \{(x, y) \in \mathbb{R}^{p+q} : x \in L\}$
- $\Diamond$  If *L* is a standard split set, then valid inequalities for R(L, P) are called split cuts.
- $\diamond$  We show (for a general split body *L*):

 $\diamond$ 

 $\Diamond$ 

- $\Rightarrow$  R(L, P) is a rational polyhedron.
- $\Rightarrow$   $R(L, P) \neq P$  iff  $v \in int(L)$  for some vertex v of P.
- We call valid inequalities for R(L, P) higher rank split cuts.

#### A split body and an LP relaxation



#### A split body and an LP relaxation



Assume *P* is a polytope for simplicity:  $P = \operatorname{conv}(\{v^i\}_{i \in V}).$ 

 $\diamond$ 

Assume *P* is a polytope for simplicity:  $P = \operatorname{conv}(\{v^i\}_{i \in V}).$ 

#### Notation:

 $\Diamond$ 

 $V^{\text{in}} \sim \text{vertices } i \in V \text{ of } P \text{ such that } v^i \in \text{int}(L)$  $V^{\text{out}} \sim \text{vertices } i \in V \text{ of } P \text{ such that } v^i \notin \text{int}(L)$ 

Assume *P* is a polytope for simplicity:  $P = \operatorname{conv}(\{v^i\}_{i \in V}).$ 

#### Notation:

 $\diamond$ 

 $V^{\text{in}} \sim \text{vertices } i \in V \text{ of } P \text{ such that } v^i \in \text{int}(L)$  $V^{\text{out}} \sim \text{vertices } i \in V \text{ of } P \text{ such that } v^i \notin \text{int}(L)$ 

♦ It seems every vertex of R(L, P) is on a line between vertices  $v^{i_1} \in int(L)$  and  $v^{i_2} \notin int(L)$ .

Assume *P* is a polytope for simplicity:  $P = \operatorname{conv}(\{v^i\}_{i \in V}).$ 

 $\Diamond$ 

 $\diamond$ 

- Notation:  $V^{\text{in}} \sim \text{vertices } i \in V \text{ of } P \text{ such that } v^i \in \text{int}(L)$  $V^{\text{out}} \sim \text{vertices } i \in V \text{ of } P \text{ such that } v^i \notin \text{int}(L)$
- ♦ It seems every vertex of R(L, P) is on a line between vertices  $v^{i_1} \in int(L)$  and  $v^{i_2} \notin int(L)$ .
  - For  $i \in V^{\text{in}}$  and  $k \in V^{\text{out}}$ , let  $\beta_{i,k} \in ]0,1]$  be s.t.  $ip_{i,k} := \beta_{i,k}v^k + (1 - \beta_{i,k})v^i$  is on the boundary of L.

Assume *P* is a polytope for simplicity:  $P = \operatorname{conv}(\{v^i\}_{i \in V}).$ 

 $\Diamond$ 

- Notation:  $V^{\text{in}} \sim \text{vertices } i \in V \text{ of } P \text{ such that } v^i \in \text{int}(L)$  $V^{\text{out}} \sim \text{vertices } i \in V \text{ of } P \text{ such that } v^i \notin \text{int}(L)$
- ♦ It seems every vertex of R(L, P) is on a line between vertices  $v^{i_1} \in int(L)$  and  $v^{i_2} \notin int(L)$ .
- ◇ For  $i \in V^{\text{in}}$  and  $k \in V^{\text{out}}$ , let  $\beta_{i,k} \in ]0,1]$  be s.t.  $\mathsf{ip}_{i,k} := \beta_{i,k} v^k + (1 \beta_{i,k}) v^i$  is on the boundary of L.
- $\diamond$  We call  $ip_{i,k}$  an intersection point (Balas).

 $\diamond$ 

A subset of P induced by  $i \in V^{\text{in}}$ :  $P^i := \operatorname{conv}(\{v^i \cup \{v^k\}_{k \in V^{\text{out}}})$ (exactly one vertex in  $\operatorname{int}(L)$ ).

A subset of P induced by  $i \in V^{\text{in}}$ :  $P^i := \operatorname{conv}(\{v^i \cup \{v^k\}_{k \in V^{\text{out}}})$ (exactly one vertex in  $\operatorname{int}(L)$ ).

$$\diamondsuit \quad \text{Trivially } P = \operatorname{conv}(\cup_{i \in V^{\text{in}}} P^i).$$

- A subset of P induced by  $i \in V^{\text{in}}$ :  $P^i := \operatorname{conv}(\{v^i \cup \{v^k\}_{k \in V^{\text{out}}})$ (exactly one vertex in  $\operatorname{int}(L)$ ).
- $\diamondsuit \quad \text{Trivially } P = \operatorname{conv}(\cup_{i \in V^{\text{in}}} P^i).$

 $\Diamond$ 

Define  $\Lambda := \{\lambda \ge 0 : \sum_{k \in V^{out}} \lambda_k \le 1\}.$ 

- A subset of P induced by  $i \in V^{\text{in}}$ :  $P^i := \operatorname{conv}(\{v^i \cup \{v^k\}_{k \in V^{\text{out}}})$ (exactly one vertex in  $\operatorname{int}(L)$ ).
- $\diamondsuit \quad \text{Trivially } P = \operatorname{conv}(\cup_{i \in V^{\text{in}}} P^i).$
- $\diamondsuit \quad \text{Define } \Lambda := \{\lambda \ge 0 : \sum_{k \in V^{\text{out}}} \lambda_k \le 1\}.$

- A subset of P induced by  $i \in V^{\text{in}}$ :  $P^i := \operatorname{conv}(\{v^i \cup \{v^k\}_{k \in V^{\text{out}}})$ (exactly one vertex in  $\operatorname{int}(L)$ ).
- $\diamondsuit \quad \text{Trivially } P = \operatorname{conv}(\cup_{i \in V^{\text{in}}} P^i).$

 $\Diamond$ 

 $\langle \rangle$ 

- Define  $\Lambda := \{\lambda \ge 0 : \sum_{k \in V^{\text{out}}} \lambda_k \le 1\}.$

Theorem:  $P(I \cap i) = f(x \mid i) \subset O^i$ 

 $R(L,Q^i) = \{(x,\lambda) \in Q^i : \sum_{k \in V^{\text{out}}} \frac{\lambda_k}{\beta_{i,k}} \ge 1\}.$ 

♦ There is only one inequality needed to describe  $R(L,Q^i)$ .

- ♦ There is only one inequality needed to describe  $R(L,Q^i)$ .

- There is only one inequality needed to describe  $R(L,Q^i)$ .
- ♦ Every vertex of R(L, P) is an intersection point  $ip_{i,k}$  for some  $i \in V^{in}$  and  $k \in V^{out}$ .

### **Relaxations from split bodies**

- There is only one inequality needed to describe  $R(L,Q^i)$ .
- ♦ Every vertex of R(L, P) is an intersection point  $ip_{i,k}$  for some  $i \in V^{in}$  and  $k \in V^{out}$ .
- $\diamond \qquad \text{We can write } R(L,P) = \operatorname{conv}(\cup_{i \in V^{\text{in}}} R(L,P^i)).$

## **Relaxations from split bodies**

- There is only one inequality needed to describe  $R(L,Q^i)$ .
- ♦ Every vertex of R(L, P) is an intersection point  $ip_{i,k}$  for some  $i \in V^{in}$  and  $k \in V^{out}$ .
- $\diamond \qquad \text{We can write } R(L,P) = \operatorname{conv}(\cup_{i \in V^{\text{in}}} R(L,P^{i})).$
- $\Diamond$  R(L,P) is completely characterized by the intersection points.

#### The example continued



#### The example continued



#### The example continued



Let  $(\pi^k)^T x \ge \pi_0^k$  with  $(\pi^k, \pi_0^k) \in \mathbb{Z}^{n+1}$  for k = 1, 2, ..., nf be the facets of a split body *L*.

 $\Diamond$ 

Let  $(\pi^k)^T x \ge \pi_0^k$  with  $(\pi^k, \pi_0^k) \in \mathbb{Z}^{n+1}$  for k = 1, 2, ..., nf be the facets of a split body *L*.

 $\Diamond$ 

 $\Diamond$ 

The width of *L* along *v* is the number (see Lovász):  $w(L, v) := \max_{x \in L} v^T x - \min_{x \in L} v^T x.$ 

Let  $(\pi^k)^T x \ge \pi_0^k$  with  $(\pi^k, \pi_0^k) \in \mathbb{Z}^{n+1}$  for k = 1, 2, ..., nf be the facets of a split body *L*.

- The width of *L* along *v* is the number (see Lovász):  $w(L, v) := \max_{x \in L} v^T x - \min_{x \in L} v^T x.$
- The max-facet-width of *L* is the number:  $w(L) := \max_{k} w(L, \pi^{k}).$

 $\Diamond$ 

 $\Diamond$ 

 $\diamond$ 

- Let  $(\pi^k)^T x \ge \pi_0^k$  with  $(\pi^k, \pi_0^k) \in \mathbb{Z}^{n+1}$  for k = 1, 2, ..., nf be the facets of a split body *L*.
- The width of *L* along *v* is the number (see Lovász):  $w(L, v) := \max_{x \in L} v^T x - \min_{x \in L} v^T x.$
- $\diamondsuit \qquad \text{The max-facet-width of } L \text{ is the number:} \\ w(L) := \max_{k} w(L, \pi^{k}).$

 $\diamond$ 

♦ Observe : any standard split set  $\{x : \pi_0 \le \pi^T x \le \pi_0 + 1\}$ has max-facet-width equal to one.

- Let  $(\pi^k)^T x \ge \pi_0^k$  with  $(\pi^k, \pi_0^k) \in \mathbb{Z}^{n+1}$  for k = 1, 2, ..., nf be the facets of a split body *L*.
- The width of *L* along *v* is the number (see Lovász):  $w(L, v) := \max_{x \in L} v^T x - \min_{x \in L} v^T x.$
- $\diamondsuit \qquad \text{The max-facet-width of } L \text{ is the number:} \\ w(L) := \max_{k} w(L, \pi^{k}).$

 $\diamond$ 

- ♦ Observe : any standard split set  $\{x : \pi_0 \le \pi^T x \le \pi_0 + 1\}$ has max-facet-width equal to one.
- ♦ Our example : The set  $\{x \in \mathbb{R}^2 : x \ge 0 \text{ and } x_1 + x_2 \le 2\}$ has max-facet-width equal to two.

Width size of  $\delta^T x \ge \delta_0$ : Min. w s.t.  $\delta^T x \ge \delta_0$  is valid for R(L, P) for a split body L with max-facet-width w.

 $\Diamond$ 

- Width size of  $\delta^T x \ge \delta_0$ : Min. w s.t.  $\delta^T x \ge \delta_0$  is valid for R(L, P) for a split body L with max-facet-width w.
- $\begin{array}{l} \diamondsuit & \textbf{Consider the mixed integer set:} \\ \{(x,y) \in \mathbb{Z}^p \times \mathbb{R}_+ : \\ & y \leq x_i \text{ for } i = 1, 2, \dots, p, \\ & \sum_{i=1}^p x_i + y \leq p \\ \}. \end{array}$

- Width size of  $\delta^T x \ge \delta_0$ : Min. w s.t.  $\delta^T x \ge \delta_0$  is valid for R(L, P) for a split body L with max-facet-width w.
- - The valid inequality  $y \leq 0$  has width size p.

Given a number  $w \ge 1$ , define:

 $\mathcal{L}^{w} := \{L : L \text{ is a split body satisfying } w(L) \le w\}$ 

of split bodies with max-facet-width at most w.

Given a number  $w \ge 1$ , define:

 $\mathcal{L}^{w} := \{L : L \text{ is a split body satisfying } w(L) \le w\}$ 

of split bodies with max-facet-width at most w.

When w = 1,  $\mathcal{L}^w$  is the (usual) set of split bodies  $L_{\pi,\pi_0} = \{x : \pi_0 \le \pi^T x \le \pi_0 + 1\}$ , where  $(\pi,\pi_0) \in \mathbb{Z}^{n+1}$ .

Given a number  $w \ge 1$ , define:

 $\mathcal{L}^{w} := \{L : L \text{ is a split body satisfying } w(L) \le w\}$ 

of split bodies with max-facet-width at most w.

- $\diamond$  For any  $w \ge 1$ , the  $w^{\text{th}}$  split closure is defined to be:

 $\mathsf{Cl}_w(P) := \bigcap_{L \in \mathcal{L}^w} R(L, P).$ 

Given a number  $w \ge 1$ , define:

 $\langle \rangle$ 

 $\mathcal{L}^{w} := \{L : L \text{ is a split body satisfying } w(L) \le w\}$ 

of split bodies with max-facet-width at most w.

 $\diamond$  For any  $w \ge 1$ , the  $w^{\text{th}}$  split closure is defined to be:

 $\mathsf{Cl}_w(P) := \bigcap_{L \in \mathcal{L}^w} R(L, P).$ 

For w = 1,  $CI_1(P)$  is known to be a polyhedron.

Given a number  $w \ge 1$ , define:

 $\mathcal{L}^{w} := \{L : L \text{ is a split body satisfying } w(L) \le w\}$ 

of split bodies with max-facet-width at most w.

- $\diamond$  For any  $w \ge 1$ , the  $w^{\text{th}}$  split closure is defined to be:

 $\mathsf{Cl}_w(P) := \bigcap_{L \in \mathcal{L}^w} R(L, P).$ 

- $\diamond$  For w = 1, Cl<sub>1</sub>(P) is known to be a polyhedron.
- $\diamond$  Theorem: For any  $w \ge 1$  and  $S \subseteq \mathcal{L}^w$ ,

 $\cap_{L \in S} R(L, P)$  is a polyhedron.

We prove the following general polyhedrality result...

- We prove the following general polyhedrality result...
- $\diamond$  Given any family  $\{(\delta^l)^T x \ge \delta_0^l\}_{l \in I}$  of rational cuts for *P*.

- We prove the following general polyhedrality result...
- $\diamond$  Given any family  $\{(\delta^l)^T x \ge \delta_0^l\}_{l \in I}$  of rational cuts for *P*.
- $\begin{tabular}{ll} & \forall e \text{ give a sufficient condition for} \\ & \{x \in P: (\delta^l)^T x \geq \delta_0^l \text{ for all } l \in I \} \text{ to be a polyhedron.} \end{tabular} \end{tabular}$

- We prove the following general polyhedrality result...
- $\diamond$  Given any family  $\{(\delta^l)^T x \ge \delta_0^l\}_{l \in I}$  of rational cuts for *P*.
- $\begin{tabular}{ll} & \forall e \text{ give a sufficient condition for} \\ & \{x \in P : (\delta^l)^T x \geq \delta_0^l \text{ for all } l \in I \} \text{ to be a polyhedron.} \end{tabular} \end{tabular}$
- ♦ We can assume all cuts  $\{(\delta^l)^T x \ge \delta_0^l\}_{l \in I}$  cut off the same set  $V^c \subset V$  of vertices of P.

- We prove the following general polyhedrality result...
- $\diamond$  Given any family  $\{(\delta^l)^T x \ge \delta_0^l\}_{l \in I}$  of rational cuts for *P*.
- $\begin{tabular}{ll} & \forall e \text{ give a sufficient condition for} \\ & \{x \in P : (\delta^l)^T x \geq \delta_0^l \text{ for all } l \in I \} \text{ to be a polyhedron.} \end{tabular} \end{tabular}$
- ♦ We can assume all cuts  $\{(\delta^l)^T x \ge \delta_0^l\}_{l \in I}$  cut off the same set  $V^c \subset V$  of vertices of P.
- ♦ Notation : Given triple  $(i, k, l) \in V^c \times (V \setminus V^c) \times I$  $(v^i \text{ is cut off, } v^k \text{ is not cut off and } l \text{ is an inequality})....$

- We prove the following general polyhedrality result...
- $\diamond$  Given any family  $\{(\delta^l)^T x \ge \delta_0^l\}_{l \in I}$  of rational cuts for *P*.
- $\begin{tabular}{ll} & \forall e \text{ give a sufficient condition for} \\ & \{x \in P : (\delta^l)^T x \geq \delta_0^l \text{ for all } l \in I \} \text{ to be a polyhedron.} \end{tabular} \end{tabular}$

 $\Diamond$ 

 $\diamond$ 

- ♦ We can assume all cuts  $\{(\delta^l)^T x \ge \delta_0^l\}_{l \in I}$  cut off the same set  $V^c \subset V$  of vertices of P.
- ♦ Notation : Given triple  $(i, k, l) \in V^c \times (V \setminus V^c) \times I$  $(v^i \text{ is cut off, } v^k \text{ is not cut off and } l \text{ is an inequality})....$ 
  - ... define  $\beta_{i,k,l} \in ]0,1]$  to be such that the point:  $v^i + \beta_{i,k,l}(v^k - v^i)$  satisfies  $(\delta^l)^T x \ge \delta_0^l$  with equality.

Theorem: If for all (i, k) and  $\beta^* \in ]0, 1]$ , we have:

 $\{\beta_{i,k,l} : l \in I \text{ and } \beta_{i,k,l} \geq \beta^*\}$  is finite,

then  $\{x \in P : (\delta^l)^T x \ge \delta_0^l \text{ for all } l \in I\}$  is a polyhedron.

Theorem: If for all (i, k) and  $\beta^* \in ]0, 1]$ , we have:

 $\{\beta_{i,k,l} : l \in I \text{ and } \beta_{i,k,l} \ge \beta^*\}$  is finite,

then  $\{x \in P : (\delta^l)^T x \ge \delta_0^l \text{ for all } l \in I\}$  is a polyhedron.

 $\diamond$  The proof is by induction on  $|V \setminus V^c| + |E|$ .

Theorem: If for all (i, k) and  $\beta^* \in ]0, 1]$ , we have:

 $\{\beta_{i,k,l} : l \in I \text{ and } \beta_{i,k,l} \ge \beta^*\}$  is finite,

then  $\{x \in P : (\delta^l)^T x \ge \delta_0^l \text{ for all } l \in I\}$  is a polyhedron.

- $\diamond$  The proof is by induction on  $|V \setminus V^c| + |E|$ .
- $\diamondsuit \qquad \text{We use this theorem on inequalities } \delta^T x \ge \delta_0 \text{ that} \\ \text{define facets of } R(L,P) \text{ for some } L \in S \subseteq \mathcal{L}^w \text{ to show:} \\ \end{cases}$

 $\cap_{L \in S} R(L, P)$  is a polyhedron.