Higher dimensional split closuresand lattice point free sets

Kent Andersen. Joint work with Q. Louveaux and R. Weismantel

Institute for Mathematical Optimization, University of Magdeburg, Germany, email: andersen@mail.math.uni-magdeburg.de

 \Diamond Lattice point free convex sets

- \diamondsuit Lattice point free convex sets
- \diamondsuit Split bodies and cutting planes

- \diamondsuit Lattice point free convex sets
- \diamondsuit Split bodies and cutting planes
- $\left\langle \right\rangle$ Structure of relaxations from split bodies

- \diamondsuit Lattice point free convex sets
- \Diamond Split bodies and cutting planes
- \Diamond Structure of relaxations from split bodies
- $\left\langle \right\rangle$ Size measures of split bodies

- \diamondsuit Lattice point free convex sets
- \diamondsuit Split bodies and cutting planes
- $\left\langle \right\rangle$ Structure of relaxations from split bodies
- $\langle \rangle$ Size measures of split bodies
- \diamondsuit Higher dimensional split closures

- \diamondsuit Lattice point free convex sets
- $\left\langle \right\rangle$ Split bodies and cutting planes
- $\langle \rangle$ Structure of relaxations from split bodies
- \bigotimes Size measures of split bodies
- $\langle \rangle$ Higher dimensional split closures
- \bigdiamondsuit Polyhedrality of higher dimensional split closures

 \diamondsuit A convex set L is lattice point free, iff L has no integer points in its interior.

- \diamondsuit \diamondsuit A convex set L is lattice point free, iff L has no integer points in its interior.
- \diamondsuit \diamondsuit If L is maximal wrt. inclusion then L is a polyhedron.

- \diamondsuit \diamondsuit A convex set L is lattice point free, iff L has no integer points in its interior.
- \Diamond If L is maximal wrt. inclusion then L is a polyhedron.
- $\langle \rangle$ \Diamond If L is a maximal lattice point free rational polyhedron, then L is full dimensional.

- \diamondsuit \diamondsuit A convex set L is lattice point free, iff L has no integer points in its interior.
- \Diamond If L is maximal wrt. inclusion then L is a polyhedron.
- $\langle \rangle$ \Diamond If L is a maximal lattice point free rational polyhedron, then L is full dimensional.
- $\left\langle {}\right\rangle$ We call maximal lattice point free rational polyhedra for split bodies.

- \diamondsuit \diamondsuit A convex set L is lattice point free, iff L has no integer points in its interior.
- \Diamond If L is maximal wrt. inclusion then L is a polyhedron.
- $\langle \rangle$ \Diamond If L is a maximal lattice point free rational polyhedron, then L is full dimensional.
- $\langle \rangle$ We call maximal lattice point free rational polyhedra for split bodies.
- $\langle \rangle$ \diamondsuit The "standard" split body: $\{x\in \mathbb{R}^n\}$ n : $\pi_0\leq\pi$ \bm{T} $T x \leq \pi_0 + 1$, where $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$.

- \diamondsuit \diamondsuit A convex set L is lattice point free, iff L has no integer points in its interior.
- \Diamond If L is maximal wrt. inclusion then L is a polyhedron.
- $\begin{matrix} \diamondsuit & \quad \quad \mathsf{If} \ \mathsf{A} & \mathsf{B} \end{matrix}$ L is a maximal lattice point free rational polyhedron, then L is full dimensional.
- \bigotimes We call maximal lattice point free rational polyhedra for split bodies.
- \diamondsuit \diamondsuit The "standard" split body: $\{x\in \mathbb{R}^n\}$ n : $\pi_0\leq\pi$ \bm{T} $T x \leq \pi_0 + 1$, where $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$.
- $\langle \rangle$ Standard split bodies can be used for deriving:
	- ⇒Mixed integer Gomory cuts (Gomory).
	- ⇒ Mixed integer rounding cuts (Nemhauser and Wolsey).

Split bodies : Examples

Split bodies : Examples

 \diamondsuit Let P be an LP relaxation of an integer set $P_I.$

 \diamondsuit Let P be an LP relaxation of an integer set $P_I.$

 \diamondsuit

 \diamondsuit \Diamond A split body L gives a stronger relaxation of P_I $R(L, P) := \text{conv}(\{x \in P : x \notin \text{int}(L)\}).$

- \diamondsuit Let P be an LP relaxation of an integer set $P_I.$
- \diamondsuit \Diamond A split body L gives a stronger relaxation of P_I $R(L, P) := \text{conv}(\{x \in P : x \notin \text{int}(L)\}).$

 \diamondsuit

 $\langle \rangle$ \diamondsuit If P is mixed with $(x, y) \in \mathbb{Z}^p \times \mathbb{R}^q$, we extend L to $\tilde{L} := \{(x, y) \in \mathbb{R}^{p+q} : x \in L\}$ $^{+q}:x\in L\}$

- \diamondsuit Let P be an LP relaxation of an integer set $P_I.$
- \Diamond \Diamond A split body L gives a stronger relaxation of P_I $R(L, P) := \text{conv}(\{x \in P : x \notin \text{int}(L)\}).$

- $\langle \rangle$ \diamondsuit If P is mixed with $(x, y) \in \mathbb{Z}^p \times \mathbb{R}^q$, we extend L to $\tilde{L} := \{(x, y) \in \mathbb{R}^{p+q} : x \in L\}$ $^{+q}:x\in L\}$
- $\begin{matrix} \diamondsuit & \quad \quad \mathsf{If} \ \quad & \quad \mathsf{D} \end{matrix}$ L is a standard split set, then valid inequalities for $R(L,P)$ are called split cuts.

- \diamondsuit Let P be an LP relaxation of an integer set $P_I.$
- \Diamond \Diamond A split body L gives a stronger relaxation of P_I $R(L, P) := \text{conv}(\{x \in P : x \notin \text{int}(L)\}).$
- \diamondsuit \diamondsuit If P is mixed with $(x, y) \in \mathbb{Z}^p \times \mathbb{R}^q$, we extend L to $\tilde{L} := \{(x, y) \in \mathbb{R}^{p+q} : x \in L\}$ $^{+q}:x\in L\}$
- $\begin{matrix} \diamondsuit & \quad \quad \mathsf{If} \ \quad & \quad \mathsf{D} \end{matrix}$ L is a standard split set, then valid inequalities for $R(L,P)$ are called split cuts.
- $\langle \rangle$ \Diamond We show (for a general split body L):

- ⇒ $R(L,P)$ is a rational polyhedron.
- $R(L, P) \neq P$ iff $v \in \text{int}(L)$ for some vertex v of P . ⇒

- \diamondsuit Let P be an LP relaxation of an integer set $P_I.$
- \diamondsuit \Diamond A split body L gives a stronger relaxation of P_I $R(L, P) := \text{conv}(\{x \in P : x \notin \text{int}(L)\}).$
- $\langle \rangle$ \diamondsuit If P is mixed with $(x, y) \in \mathbb{Z}^p \times \mathbb{R}^q$, we extend L to $\tilde{L} := \{(x, y) \in \mathbb{R}^{p+q} : x \in L\}$ $^{+q}:x\in L\}$
- $\langle \rangle$ \Diamond If L is a standard split set, then valid inequalities for $D(L, R)$ are called aplit quite $R(L,P)$ are called split cuts.
- $\langle \rangle$ \Diamond We show (for a general split body L):

- ⇒ $R(L,P)$ is a rational polyhedron.
- $R(L, P) \neq P$ iff $v \in \text{int}(L)$ for some vertex v of P . ⇒
- \diamondsuit \Diamond We call valid inequalities for $R(L, P)$ higher rank split cuts.

A split body and an LP relaxation

A split body and an LP relaxation

 \diamondsuit Assume P is a polytope for simplicity: $P = \text{conv}(\{v$ $^{i}\}_{i\in V}).$

 \diamondsuit Assume P is a polytope for simplicity: $P = \text{conv}(\{v$ $^{i}\}_{i\in V}).$

Notation:

 \diamondsuit

 \diamondsuit

 V^{in} ∼ \sim vertices $i\in V$ of P such that v $V^{\text{out}} \sim$ vertices $i \in V$ of P such that $v^i \notin \text{int}$ $i \in \mathrm{int}(L)$ ∼ \sim vertices $i\in V$ of P such that v $i \notin \text{int}(L)$

- \diamondsuit Assume P is a polytope for simplicity: $P = \text{conv}(\{v$ $^{i}\}_{i\in V}).$
	- Notation:

 \diamondsuit

 \diamondsuit

 V^{in} ∼ \sim vertices $i\in V$ of P such that v $V^{\text{out}} \sim$ vertices $i \in V$ of P such that $v^i \notin \text{int}(I)$ $i \in \mathrm{int}(L)$ ∼ \sim vertices $i\in V$ of P such that v $i \notin \text{int}(L)$

 \diamondsuit \Diamond It seems every vertex of $R(L, P)$ is on a line between vertices $v^{\imath_1}\in \text{int}(L)$ and $v^{\imath_2}\notin \text{i}$ i_1 $v^1 \in \text{int}(L)$ and v i_2 $e^2 \notin \text{int}(L)$.

 \diamondsuit Assume P is a polytope for simplicity: $P = \text{conv}(\{v$ $^{i}\}_{i\in V}).$

 \diamondsuit

 \diamondsuit

 $\langle \rangle$

- Notation: V^{in} ∼ \sim vertices $i\in V$ of P such that v $V^{\text{out}} \sim$ vertices $i \in V$ of P such that $v^i \notin \text{int}(I)$ $i \in \mathrm{int}(L)$ ∼ \sim vertices $i\in V$ of P such that v $i \notin \text{int}(L)$
- $\langle \rangle$ \Diamond It seems every vertex of $R(L, P)$ is on a line between vertices $v^{\imath_1}\in \text{int}(L)$ and $v^{\imath_2}\notin \text{i}$ i_1 $v^1 \in \text{int}(L)$ and v i_2 $e^2 \notin \text{int}(L)$.
- \diamondsuit For $i \in V^{\text{in}}$ and $k \in V^{\text{out}}$, let $\beta_{i,k} \in]0,1]$ be s.t. ip $_{i,k}:=\beta_{i,k}v^{k}+(1-\beta_{i,k})v^{i}$ is or $^{k}+\left(1\right)$ − $\beta_{i,k})v$ i is on the boundary of $L.$

 \diamondsuit Assume P is a polytope for simplicity: $P = \text{conv}(\{v$ $^{i}\}_{i\in V}).$

 \diamondsuit

- Notation: V^{in} ∼ \sim vertices $i\in V$ of P such that v $V^{\text{out}} \sim$ vertices $i \in V$ of P such that $v^i \notin \text{int}(I)$ $i \in \mathrm{int}(L)$ ∼ \sim vertices $i\in V$ of P such that v $i \notin \text{int}(L)$
- $\langle \rangle$ \Diamond It seems every vertex of $R(L, P)$ is on a line between vertices $v^{\imath_1}\in \text{int}(L)$ and $v^{\imath_2}\notin \text{i}$ i_1 $v^1 \in \text{int}(L)$ and v i_2 $e^2 \notin \text{int}(L)$.
- $\langle \rangle$ \diamondsuit For $i \in V^{\text{in}}$ and $k \in V^{\text{out}}$, let $\beta_{i,k} \in]0,1]$ be s.t. ip $_{i,k}:=\beta_{i,k}v^{k}+(1-\beta_{i,k})v^{i}$ is or $^{k}+\left(1\right)$ − $\beta_{i,k})v$ i is on the boundary of $L.$
- $\langle \rangle$ We call $ip_{i,k}$ an intersection point (Balas).

 \diamondsuit

 \diamondsuit A subset of P induced by $i \in V^{\mathsf{in}}$: $P^i := \mathrm{conv}(\{v^i \cup \{v^k\}_{k \in V}$ out (exactly one vertex in $\operatorname{int}(L)$). $i \cup \{v$ $\,k$ $\left\{\begin{matrix}k\end{matrix}\right\}_{k\in V}$ out)

- \diamondsuit A subset of P induced by $i \in V^{\mathsf{in}}$: $P^i := \mathrm{conv}(\{v^i \cup \{v^k\}_{k \in V}$ out (exactly one vertex in $\operatorname{int}(L)$). $i \cup \{v$ $\,k$ $\left\{\begin{matrix}k\end{matrix}\right\}_{k\in V}$ out)
- $\langle \rangle$ \diamondsuit Trivially $P = \text{conv}(\cup_{i \in V}$ in $P^i).$

- \diamondsuit A subset of P induced by $i \in V^{\mathsf{in}}$: $P^i := \mathrm{conv}(\{v^i \cup \{v^k\}_{k \in V}$ out (exactly one vertex in $\operatorname{int}(L)$). $i \cup \{v$ $\,k$ $\left\{\begin{matrix}k\end{matrix}\right\}_{k\in V}$ out)
- $\langle \rangle$ \diamondsuit Trivially $P = \text{conv}(\cup_{i \in V}$ in $P^i).$

 \diamondsuit

 \diamondsuit \diamondsuit Define $\Lambda := \{\lambda \geq 0 : \sum_{k \in V^{\text{out}}}$ $\lambda_k\leq 1\}.$

- \diamondsuit A subset of P induced by $i \in V^{\mathsf{in}}$: $P^i := \mathrm{conv}(\{v^i \cup \{v^k\}_{k \in V}$ out (exactly one vertex in $\operatorname{int}(L)$). $i \cup \{v$ $\,k$ $\left\{\begin{matrix}k\end{matrix}\right\}_{k\in V}$ out)
- $\langle \rangle$ \diamondsuit Trivially $P = \text{conv}(\cup_{i \in V}$ in $P^i).$

- $\langle \rangle$ \diamondsuit Define $\Lambda := \{\lambda \geq 0 : \sum_{k \in V^{\text{out}}}$ $\lambda_k\leq 1\}.$
- \Diamond \Diamond We have that P^i is the projection of the set: $Q^i:=\{(x,\lambda)$ onto the space of x -variables. $\imath := \{(x, \lambda) : x = v\}$ $\frac{i}{\cdot}+\sum_{k\in V}$ out $\lambda_k(v$ $\,k$ $\ddot{}$ v i $), \lambda \in \Lambda \}$

- \diamondsuit A subset of P induced by $i \in V^{\mathsf{in}}$: $P^i := \mathrm{conv}(\{v^i \cup \{v^k\}_{k \in V}$ out (exactly one vertex in $\operatorname{int}(L)$). $i \cup \{v$ $\,k$ $\left\{\begin{matrix}k\end{matrix}\right\}_{k\in V}$ out)
- $\langle \rangle$ \diamondsuit Trivially $P = \text{conv}(\cup_{i \in V}$ in $P^i).$
- $\langle \rangle$ \diamondsuit Define $\Lambda := \{\lambda \geq 0 : \sum_{k \in V^{\text{out}}}$ $\lambda_k\leq 1\}.$
- \Diamond \Diamond We have that P^i is the projection of the set: $Q^i:=\{(x,\lambda)$ onto the space of x -variables. $\imath := \{(x, \lambda) : x = v\}$ $\frac{i}{\cdot}+\sum_{k\in V}$ out $\lambda_k(v$ $\,k$ $\ddot{}$ v i $), \lambda \in \Lambda \}$

Theorem:

 \diamondsuit

 $\left\langle \right\rangle$

 $R(L,Q^i)$ = $\{(x,\lambda) \in Q^i : \sum_{k \in V^{\text{out}}}$ λk $\beta_{i,k}$ $\geq 1\}.$

 $\langle \rangle$ There is only one inequality needed to describe $R(L,Q^i).$

- $\langle \rangle$ There is only one inequality needed to describe $R(L,Q^i).$
- \diamondsuit \diamondsuit The inequality $\sum_{k\in V^{\textsf{out}}}$ λ \boldsymbol{k} $\beta_{i,k}$ ≥ 1 is an intersection cut (Balas).

- \diamondsuit There is only one inequality needed to describe $R(L,Q^i).$
- \diamondsuit \diamondsuit The inequality $\sum_{k\in V^{\textsf{out}}}$ λ \boldsymbol{k} $\beta_{i,k}$ ≥ 1 is an intersection cut (Balas).
- \diamondsuit \Diamond Every vertex of $R(L,P)$ is an intersection point ${\sf ip}_{i,k}$ for some $i\in V^{\mathsf{in}}$ and $k\in V^{\mathsf{out}}$.

- \diamondsuit There is only one inequality needed to describe $R(L,Q^i).$
- \diamondsuit \diamondsuit The inequality $\sum_{k\in V^{\textsf{out}}}$ λ \boldsymbol{k} $\beta_{i,k}$ ≥ 1 is an intersection cut (Balas).
- \diamondsuit \Diamond Every vertex of $R(L,P)$ is an intersection point ${\sf ip}_{i,k}$ for some $i\in V^{\mathsf{in}}$ and $k\in V^{\mathsf{out}}$.
- $\langle \rangle$ \diamondsuit We can write $R(L, P) = \text{conv}(\cup_{i \in V} P)$ $R(L,P^i)).$

- \diamondsuit There is only one inequality needed to describe $R(L,Q^i).$
- \Diamond \diamondsuit The inequality $\sum_{k\in V^{\textsf{out}}}$ λ \boldsymbol{k} $\beta_{i,k}$ ≥ 1 is an intersection cut (Balas).
- \diamondsuit \Diamond Every vertex of $R(L,P)$ is an intersection point ${\sf ip}_{i,k}$ for some $i\in V^{\mathsf{in}}$ and $k\in V^{\mathsf{out}}$.
- \diamondsuit \diamondsuit We can write $R(L, P) = \text{conv}(\cup_{i \in V} P)$ $R(L,P^i)).$
- $\langle \rangle$ $R(L,P)$ is completely characterized by the intersection points.

The example continued

The example continued

The example continued

 \Leftrightarrow Let (π) be the facets of a split body L . $\,$ $(koperator)^T$ $x\geq \pi$ $\,$ 0 $_0^k$ with $(\pi$ $\,$, π_{0}^{\cdot} $\,$ $\binom{k}{0}\in\mathbb{Z}^{n+1}$ for $k=1,2,\ldots,$ nf

 $\langle \rangle$

 \Leftrightarrow Let (π) be the facets of a split body L . $\,$ $(koperator)^T$ $x\geq \pi$ $\,$ 0 $_0^k$ with $(\pi$ $\,$, π_{0}^{\cdot} $\,$ $\binom{k}{0}\in\mathbb{Z}^{n+1}$ for $k=1,2,\ldots,$ nf

 $\langle \rangle$

 \Diamond

 $\Diamond \hspace{1cm}$ The width of L along v is the number (see Lovász): $w(L,v) \mathrel{\mathop:}=$ $=\frac{\max}{x \in L}$ $\stackrel{\cdots}{x} \in L^{'}v$ $\, T \,$ $-x -\frac{\min}{x \in L}$ $\stackrel{\cdots}{x} \in L^{'}v$ $\, T \,$ $\cdot x$.

- \Leftrightarrow Let (π) be the facets of a split body L . $\,$ $(koperator)^T$ $x\geq \pi$ $\,$ 0 $_0^k$ with $(\pi$ $\,$, π_{0}^{\cdot} $\,$ $\binom{k}{0}\in\mathbb{Z}^{n+1}$ for $k=1,2,\ldots,$ nf
- $\Diamond \hspace{1cm}$ The width of L along v is the number (see Lovász): $w(L,v) \mathrel{\mathop:}=$ $=\frac{\max}{x \in L}$ $\stackrel{\cdots}{x} \in L^{'}v$ $\, T \,$ $-x -\frac{\min}{x \in L}$ $\stackrel{\cdots}{x} \in L^{'}v$ $\, T \,$ $\cdot x$.
- \Diamond The max-facet-width of L is the number:
 $\overline{\langle L \rangle}$ and $\overline{\langle L \rangle}$ $w(L) :=$ $=$ $\frac{\text{max}}{k}$ $\frac{d}{k}w(L,\pi^k)$ $^k)$.

 $\langle \rangle$

 $\langle \rangle$

 $\langle \rangle$

- \Leftrightarrow Let (π) be the facets of a split body L . $\,$ $(koperator)^T$ $x\geq \pi$ $\,$ 0 $_0^k$ with $(\pi$ $\,$, π_{0}^{\cdot} $\,$ $\binom{k}{0}\in\mathbb{Z}^{n+1}$ for $k=1,2,\ldots,$ nf
- $\Diamond \hspace{1cm}$ The width of L along v is the number (see Lovász): $w(L,v) \mathrel{\mathop:}=$ $=\frac{\max}{x \in L}$ $\stackrel{\cdots}{x} \in L^{'}v$ $\, T \,$ $-x -\frac{\min}{x \in L}$ $\stackrel{\cdots}{x} \in L^{'}v$ $\, T \,$ $~\cdot$ x .
- $\langle \rangle$ \Diamond The max-facet-width of L is the number:
 $\overline{\langle L \rangle}$ and $\overline{\langle L \rangle}$ $w(L) :=$ $=$ $\frac{\text{max}}{k}$ $\frac{d}{k}w(L,\pi^k)$ $^k)$.

 \diamondsuit

 $\langle \rangle$

 $\langle \rangle$ \diamondsuit Observe : any standard split set $\{x : \pi_0 \leq \pi\}$ has max-facet-width equal to <mark>one</mark>. $\, T \,$ $T_x \leq \pi_0 + 1$

- \Leftrightarrow Let (π) be the facets of a split body L . $\,$ $(koperator)^T$ $x\geq \pi$ $\,$ 0 $_0^k$ with $(\pi$ $\,$, π_{0}^{\cdot} $\,$ $\binom{k}{0}\in\mathbb{Z}^{n+1}$ for $k=1,2,\ldots,$ nf
- $\Diamond \hspace{1cm}$ The width of L along v is the number (see Lovász): $w(L,v) \mathrel{\mathop:}=$ $=\frac{\max}{x \in L}$ $\stackrel{\cdots}{x} \in L^{'}v$ $\, T \,$ $-x -\frac{\min}{x \in L}$ $\stackrel{\cdots}{x} \in L^{'}v$ $\, T \,$ $~\cdot$ x .
- $\langle \rangle$ \Diamond The max-facet-width of L is the number:
 $\overline{\langle L \rangle}$ and $\overline{\langle L \rangle}$ $w(L) :=$ $=$ $\frac{\text{max}}{k}$ $\frac{d}{k}w(L,\pi^k)$ $^k)$.

 \diamondsuit

 $\langle \rangle$

- $\langle \rangle$ \diamondsuit Observe : any standard split set $\{x : \pi_0 \leq \pi\}$ has max-facet-width equal to <mark>one</mark>. $\, T \,$ $T_x \leq \pi_0 + 1$
- $\langle \rangle$ \diamondsuit Our example : The set $\{x \in \mathbb{R}^2\}$ has max-facet-width equal to <mark>two.</mark> $x^2: x \geq 0$ and $x_1 + x_2 \leq 2$

 $\begin{array}{ll} \diamondsuit & \quad \text{Width size of } \delta^T\ \textcolor{red}{\Omega^T} & \textcolor{red}{\Omega^T} & \textcolor{red}{\Omega^T} \end{array}$ nlit k ${}^{T}x\geq \delta_0$ λ _V I with mov fooot δ_0 : Min. w s.t. δ^T $x\geq \delta_0$ $R(L,P)$ for a split body L with max-facet-width $w.$ $_0$ is valid for

 $\left\langle \right\rangle$

- $\begin{array}{ll} \diamondsuit & \quad \text{Width size of } \delta^T\ \textcolor{red}{\Omega^T} & \textcolor{red}{\Omega^T} & \textcolor{red}{\Omega^T} \end{array}$ nlit k ${}^{T}x\geq \delta_0$ λ _V I with mov fooot δ_0 : Min. w s.t. δ^T $x\geq \delta_0$ $R(L,P)$ for a split body L with max-facet-width $w.$ $_0$ is valid for
- \diamondsuit Consider the mixed integer set: $\{(x,y)\in\mathbb{Z}^p\times\mathbb{R}_+:\}$ $y\leq x_i$ for $i=1,2,\ldots,p$, $\sum_{i=1}^p x_i + y \leq p$ }.

- $\begin{array}{ll} \diamondsuit & \quad \text{Width size of } \delta^T\ \textcolor{red}{\Omega^T} & \textcolor{red}{\Omega^T} & \textcolor{red}{\Omega^T} \end{array}$ nlit k ${}^{T}x\geq \delta_0$ λ _V I with mov fooot δ_0 : Min. w s.t. δ^T $x\geq \delta_0$ $R(L,P)$ for a split body L with max-facet-width $w.$ $_0$ is valid for
- $\langle \rangle$ Consider the mixed integer set: $\{(x,y)\in\mathbb{Z}^p\times\mathbb{R}_+:\}$ $y\leq x_i$ for $i=1,2,\ldots,p$, $\sum_{i=1}^p x_i + y \leq p$ }.

 \diamondsuit

 \diamondsuit

 \diamondsuit The valid inequality $y\leq 0$ has width size p .

 \diamondsuit Given a number $w \geq 1$, define:

 \diamondsuit

 $\mathcal{L}^w:=\{L: L$ is a split body satisfying $w(L)\leq w\}$

of split bodies with max-facet-width at most w_\cdot

 \diamondsuit Given a number $w \geq 1$, define:

 \diamondsuit

 $\mathcal{L}^w:=\{L: L$ is a split body satisfying $w(L)\leq w\}$

of split bodies with max-facet-width at most w_\cdot

 \diamondsuit $\begin{array}{ll}\Diamond \quad & \text{When } w=1, \, \mathcal{L}^w \text{ is the (usual) set of split bodies}\ \end{array}$ $L_{\pi,\pi_0}=\{x:\pi_0\leq \pi^Tx\leq \pi_0+1\},$ where $(\pi,\pi_0)\in A$ ${x:\pi_0\leq \pi}$ $\, T \,$ $x\leq \pi_0+1\}$, where $(\pi,\pi_0)\in \mathbb{Z}^{n+1}$.

 \diamondsuit Given a number $w \geq 1$, define:

 \diamondsuit

 $\mathcal{L}^w:=\{L: L$ is a split body satisfying $w(L)\leq w\}$

of split bodies with max-facet-width at most w_\cdot

- $\langle \rangle$ $\begin{array}{ll}\Diamond \quad & \text{When } w=1, \, \mathcal{L}^w \text{ is the (usual) set of split bodies}\ \end{array}$ $L_{\pi,\pi_0}=\{x:\pi_0\leq \pi^Tx\leq \pi_0+1\},$ where $(\pi,\pi_0)\in A$ ${x:\pi_0\leq \pi}$ $\, T \,$ $x\leq \pi_0+1\}$, where $(\pi,\pi_0)\in \mathbb{Z}^{n+1}$.
- $\langle \rangle$ \diamondsuit For any $w\geq 1$, the w^th split closure is defined to be:

 $\mathsf{Cl}_w(P) := \cap_{L \in \mathcal{L}^w} R(L,P).$

 \diamondsuit Given a number $w \geq 1$, define:

 \diamondsuit

 $\mathcal{L}^w:=\{L: L$ is a split body satisfying $w(L)\leq w\}$

of split bodies with max-facet-width at most w_\cdot

- $\langle \rangle$ $\begin{array}{ll}\Diamond \quad & \text{When } w=1, \, \mathcal{L}^w \text{ is the (usual) set of split bodies}\ \end{array}$ $L_{\pi,\pi_0}=\{x:\pi_0\leq \pi^Tx\leq \pi_0+1\},$ where $(\pi,\pi_0)\in \mathbb{R}$ ${x:\pi_0\leq \pi}$ $\, T \,$ $x\leq \pi_0+1\}$, where $(\pi,\pi_0)\in \mathbb{Z}^{n+1}$.
- $\langle \rangle$ \diamondsuit For any $w\geq 1$, the w^th split closure is defined to be:

$$
\operatorname{Cl}_w(P) := \cap_{L \in \mathcal{L}^w} R(L, P).
$$

 $\langle \rangle$ \diamondsuit For $w = 1$, Cl $_1(P)$ is known to be a polyhedron.

 \diamondsuit Given a number $w \geq 1$, define:

 \diamondsuit

 $\mathcal{L}^w:=\{L: L$ is a split body satisfying $w(L)\leq w\}$

of split bodies with max-facet-width at most w_\cdot

- $\langle \rangle$ $\begin{array}{ll}\Diamond \quad & \text{When } w=1, \, \mathcal{L}^w \text{ is the (usual) set of split bodies}\ \end{array}$ $L_{\pi,\pi_0}=\{x:\pi_0\leq \pi^Tx\leq \pi_0+1\},$ where $(\pi,\pi_0)\in \mathbb{R}$ ${x:\pi_0\leq \pi}$ $\, T \,$ $x\leq \pi_0+1\}$, where $(\pi,\pi_0)\in \mathbb{Z}^{n+1}$.
- $\langle \rangle$ \diamondsuit For any $w\geq 1$, the w^th split closure is defined to be:

$$
\operatorname{Cl}_w(P) := \cap_{L \in \mathcal{L}^w} R(L, P).
$$

- $\langle \rangle$ \diamondsuit For $w = 1$, Cl $_1(P)$ is known to be a polyhedron.
- $\langle \rangle$ \diamondsuit Theorem: For any $w \geq 1$ and $S \subseteq \mathcal{L}^w$,

 $\cap_{L\in S}R(L,P)$ is a polyhedron.

We prove the following general polyhedrality result...

- \diamondsuit We prove the following general polyhedrality result...
- $\langle \rangle$ \diamondsuit Given any family $\{(\delta^l)$ $)^T$ ${}^{\displaystyle T}x\geq \delta_0^l\}_{l\in I}$ $_I$ of rational cuts for $P.$

- We prove the following general polyhedrality result...
- \diamondsuit \diamondsuit Given any family $\{(\delta^l)$ $)^T$ ${}^{\displaystyle T}x\geq \delta_0^l\}_{l\in I}$ $_I$ of rational cuts for $P.$
- $\langle \rangle$ We give ^a sufficient condition for ${x \in P : (\delta^l)}$ $)^T$ ${}^{\displaystyle T}x\geq \delta^l_0$ $\frac{l}{0}$ for all $l\in I\}$ to be a polyhedron.

- We prove the following general polyhedrality result...
- \diamondsuit \diamondsuit Given any family $\{(\delta^l)$ $)^T$ ${}^{\displaystyle T}x\geq \delta_0^l\}_{l\in I}$ $_I$ of rational cuts for $P.$
- \Diamond We give ^a sufficient condition for ${x \in P : (\delta^l)}$ $)^T$ ${}^{\displaystyle T}x\geq \delta^l_0$ $\frac{l}{0}$ for all $l\in I\}$ to be a polyhedron.

 \diamondsuit

 $\big\langle \big\rangle$ \diamond We can assume all cuts $\{(\delta^l)$ same set $V^c\subset V$ of vertices of P $)^T$ ${}^{\displaystyle T}x\geq \delta_0^l\}_{l\in I}$ $_I$ cut off the $c \subset V$ of vertices of P .

- We prove the following general polyhedrality result...
- \diamondsuit \diamondsuit Given any family $\{(\delta^l)$ $)^T$ ${}^{\displaystyle T}x\geq \delta_0^l\}_{l\in I}$ $_I$ of rational cuts for $P.$
- \diamondsuit We give ^a sufficient condition for ${x \in P : (\delta^l)}$ $)^T$ ${}^{\displaystyle T}x\geq \delta^l_0$ $\frac{l}{0}$ for all $l\in I\}$ to be a polyhedron.

- \diamondsuit \diamond We can assume all cuts $\{(\delta^l)$ same set $V^c\subset V$ of vertices of P $)^T$ ${}^{\displaystyle T}x\geq \delta_0^l\}_{l\in I}$ $_I$ cut off the $c \subset V$ of vertices of P .
- \diamondsuit Notation : Given triple $(i, k, l) \in V^c$ $\langle \rangle$ a del televisión de la contra $^c\times(V\setminus V^c$ $^c)\times I$ $(v^i$ is cut off, v^k is *not* cut off and l is an inequalit i is cut off, v k is *not* cut off and l is an inequality)....

- We prove the following general polyhedrality result...
- \diamondsuit \diamondsuit Given any family $\{(\delta^l)$ $)^T$ ${}^{\displaystyle T}x\geq \delta_0^l\}_{l\in I}$ $_I$ of rational cuts for $P.$
- \diamondsuit We give ^a sufficient condition for ${x \in P : (\delta^l)}$ $)^T$ ${}^{\displaystyle T}x\geq \delta^l_0$ $\frac{l}{0}$ for all $l\in I\}$ to be a polyhedron.

 $\left\langle \right\rangle$

- \diamondsuit \diamond We can assume all cuts $\{(\delta^l)$ same set $V^c\subset V$ of vertices of P $)^T$ ${}^{\displaystyle T}x\geq \delta_0^l\}_{l\in I}$ $_I$ cut off the $c \subset V$ of vertices of P .
- \diamondsuit Notation : Given triple $(i, k, l) \in V^c$ $\langle \rangle$ a del televisión de la contra $^c\times(V\setminus V^c$ $^c)\times I$ $(v^i$ is cut off, v^k is *not* cut off and l is an inequalit i is cut off, v k is *not* cut off and l is an inequality)....
- \Diamond ... define $\beta_{i,k,l}\in]0,1]$ to be such that the point: $v\,$ $i^i + \beta_{i,k,l}(v)$ $\,$ $\ddot{}$ v $^i)$ satisfies $(\delta^l$ $)^T$ ${}^{\displaystyle T}x\geq \delta_0^l$ $_0^{\ell}$ with equality.

 \diamondsuit Theorem: If for all (i,k) and β^* $^* \in]0,1]$, we have:

 \diamondsuit

 $\{\beta_{i,k,l}: l\in I$ and $\beta_{i,k,l}\geq\beta^*$ $\set{\text{'}}$ is finite,

then $\{x \in P : (\delta^l)$ $)^T$ ${}^{\displaystyle T}x\geq \delta_0^l$ $\frac{l}{0}$ for all $l\in I\}$ is a polyhedron.

 \diamondsuit Theorem: If for all (i,k) and β^* $^* \in]0,1]$, we have:

> $\{\beta_{i,k,l}: l\in I$ and $\beta_{i,k,l}\geq\beta^*$ $\set{\text{'}}$ is finite,

then $\{x \in P : (\delta^l)$ $)^T$ ${}^{\displaystyle T}x\geq \delta_0^l$ $\frac{l}{0}$ for all $l\in I\}$ is a polyhedron.

 \diamond The proof is by induction on $|V\setminus V^c|$ \diamondsuit $|c| + |E|.$

 \diamondsuit Theorem: If for all (i,k) and β^* $^* \in]0,1]$, we have:

> $\{\beta_{i,k,l}: l\in I$ and $\beta_{i,k,l}\geq\beta^*$ $\set{\text{'}}$ is finite,

then $\{x \in P : (\delta^l)$ $)^T$ ${}^{\displaystyle T}x\geq \delta_0^l$ $\frac{l}{0}$ for all $l\in I\}$ is a polyhedron.

 \diamondsuit \Diamond The proof is by induction on $|V\setminus V^c|$ $|c| + |E|.$

 \diamondsuit

 $\langle \rangle$ \Diamond We use this theorem on inequalities δ^T $C \subset$ $x\geq \delta_0$ define facets of $R(L,P)$ for some $L\in S\subseteq \mathcal{L}^w$ to show: $_0$ that

 $\cap_{L\in S}R(L,P)$ is a polyhedron.