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A convex set L is lattice point free, iff L has
no integer points Iin its interior.

If L iIs maximal wrt. inclusion then L is a polyhedron.

If L iIs a maximal lattice point free rational polyhedron,
then L is full dimensional.

We call maximal lattice point free rational polyhedra for
split bodies.
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L attice point free sets
B

A convex set L is lattice point free, iff L has
no integer points Iin its interior.

If L iIs maximal wrt. inclusion then L is a polyhedron.

If L iIs a maximal lattice point free rational polyhedron,
then L is full dimensional.

We call maximal lattice point free rational polyhedra for
split bodies.

The “standard” split body: {z € R" : 7y < nla < 19 + 1},
where (7, m) € 2"+,

-
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L attice point free sets

A convex set L is lattice point free, iff L has
no integer points Iin its interior.

If L iIs maximal wrt. inclusion then L is a polyhedron.

If L iIs a maximal lattice point free rational polyhedron,
then L is full dimensional.

We call maximal lattice point free rational polyhedra for
split bodies.

=

The “standard” split body: {z € R" : 7y < nla < 19 + 1},

where (7, m) € 2"+,

Standard split bodies can be used for deriving:
Mixed integer Gomory cuts (Gomory).

Mixed integer rounding cuts
(Nemhauser and Wolsey).
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Split bodies: Examples

X2 A X, + X, <= 2
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Split bodies and cutting planes
-

O Let P be an LP relaxation of an integer set P;.
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Let P be an LP relaxation of an integer set P;.

R
O A split body L gives a stronger relaxation of P;
R(L,P):=conv({x € P:x & int(L)}).
O If P is mixed with (x,y) € Z” x RY, we extend L to
L:={(z,y) e RPY9 .1z € L}
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Let P be an LP relaxation of an integer set P;.

A split body L gives a stronger relaxation of P;
R(L,P):=conv({x € P:x & int(L)}).

If P is mixed with (x,y) € Z” x RY, we extend L to
L:={(z,y) e RPY9 .1z € L}

If L Is a standard split set, then valid inequalities for
R(L, P) are called split cuts.
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Let P be an LP relaxation of an integer set P;.

R
O A split body L gives a stronger relaxation of P;
R(L,P):=conv({x € P:x & int(L)}).
O If P is mixed with (x,y) € Z” x RY, we extend L to
L:={(z,y) e RPY9 .1z € L}

O If L Is a standard split set, then valid inequalities for
R(L, P) are called split cuts.

O We show (for a general split body L):
= R(L, P) Is a rational polyhedron.
= R(L, P) # P iff v € int(L) for some vertex v of P.
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Split bodies and cutting planes
-

Let P be an LP relaxation of an integer set P;.

R
O A split body L gives a stronger relaxation of P;
R(L,P):=conv({x € P:x & int(L)}).
O If P is mixed with (x,y) € Z” x RY, we extend L to
L:={(z,y) e RPY9 .1z € L}

O If L Is a standard split set, then valid inequalities for
R(L, P) are called split cuts.

O We show (for a general split body L):
= R(L, P) Is a rational polyhedron.
= R(L, P) # P iff v € int(L) for some vertex v of P.

O We call valid inequalities for R(L, P) higher rank split

L cuts. J
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Relaxations from split bodies

o .

Assume P is a polytope for simplicity:
P = conv({v'};cp).
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Assume P is a polytope for simplicity:
P = conv({v'};cp).

$  Notation: .
V" ~ vertices i € V of P such that v* € int(L)

Vout ~ vertices i € V of P such that v* ¢ int(L)
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Assume P is a polytope for simplicity:
P = conv({v'};cp).

Notation: .
V" ~ vertices i € V of P such that v* € int(L)

Vout ~ vertices i € V of P such that v* ¢ int(L)

It seems every vertex of R(L, P) is on a line between
vertices v"! € int(L) and v* ¢ int(L).
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Assume P is a polytope for simplicity:
P = conv({v'};cp).

Notation: .
V" ~ vertices i € V of P such that v* € int(L)

Vout ~ vertices i € V of P such that v* ¢ int(L)

It seems every vertex of R(L, P) is on a line between
vertices v"* € int(L) and v** ¢ int(L).

Forie V"and k € Vo, let 3 €]0,1] be s.t.

ip; 1 := Bi k0" + (1 — B, )v" is on the boundary of L.
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Relaxations from split bodies

Assume P is a polytope for simplicity:
P = conv({v'};cp).

Notation: .
V" ~ vertices i € V of P such that v* € int(L)

Vout ~ vertices i € V of P such that v* ¢ int(L)

It seems every vertex of R(L, P) is on a line between
vertices v"! € int(L) and v* ¢ int(L).

Forie V"and k € Vo, let 3 €]0,1] be s.t.

ip; 1 := Bi k0" + (1 — B, )v" is on the boundary of L.

We call ip; ;. an intersection point (Balas).
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Relaxations from split bodies

-

& Asubset of Pinduced by i € V™:
P! := conv({v' U {Uk}kEV )
(exactly one vertex in int(L)).
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P! := conv({v' U {Uk}kEV )
(exactly one vertex in int(L)).

O Trivially P = conv(U;cyn PY).
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Relaxations from split bodies

R .

& Asubset of Pinduced by i € V™:
P! = conv({v' U {v*},cyou)
(exactly one vertex in int(L)).

O Trivially P = conv(U;cyn PY).
¢ Define Ai={A>0:> pou A < 1}.

Hiaher dimensional split closures and lattice point free sets — p



o |

<> <5

Relaxations from split bodies

A subset of P induced by ¢ € V'™:

P! = conv({v' U {v*},cyou)
(exactly one vertex in int(L)).
Trivially P = conv(U;cynP?).

Define A :={A>0:)> oy Ap <1}

We have that P! is the projection of the set:

Q' = {(x,\):x =" —I—Zkevot)\k(v — V'), A €A}
onto the space of xz-variables.

=

Hiaher dimensional split closures and lattice point free sets — p



o |

<> <5

Relaxations from split bodies

A subset of P induced by ¢ € V'™:

P! = conv({v' U {v*},cyou)
(exactly one vertex in int(L)).

Trivially P = conv(U;cynP?).
Define A :={A>0:)> oy Ap <1}

We have that P! is the projection of the set:

Q' = {(x,\):x =" —I—Zkevot)\k(v — V'), A €A}
onto the space of xz-variables.

Theorem:

R(L,Q") = {(z,)) € Q" : Xpeymn 5= > 1}.

=
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L .

There is only one inequality needed to describe

R(L, Q).
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There is only one inequality needed to describe
R(L,Q").

O The inequality > ;o % > 1 IS an intersection cut
(Balas).
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There is only one inequality needed to describe
R(L,Q").

O The inequality > ;o % > 1 IS an intersection cut
(Balas).

O Every vertex of R(L, P) Is an intersection point ip, ; for
some: c V" and k € Vo,
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Relaxations from split bodies

There is only one inequality needed to describe
R(L,Q").

The inequality > ;o % > 1 IS an intersection cut
(Balas).

Every vertex of R(L, P) Is an intersection point ip, ; for
some: c V" and k € Vo,

We can write R(L, P) = conv(U;eynR(L, PY)).

=
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Relaxations from split bodies

There is only one inequality needed to describe
R(L,Q").

The inequality > ;o % > 1 IS an intersection cut
(Balas).

Every vertex of R(L, P) Is an intersection point ip, ; for
some: c V" and k € Vo,

We can write R(L, P) = conv(U;eynR(L, PY)).

R(L, P) Is completely characterized by the intersection
points.
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Width measure and width size

=

O Let (7*)1'z > #k with (7% #f) € Z" for k =1,2,... nf
be the facets of a split body L.
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O Let (7*)1'z > #k with (7% #f) € Z" for k =1,2,... nf
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O The width of L along v is the number (see Lovasz):

. max_T min 7T
w(L,v) = Svie— v
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Width measure and width size

Let (7*)1'z > #k with (7% #f) € Z" for k =1,2,... nf
be the facets of a split body L.

The width of L along v is the number (see Lovasz):

. max_T min 7T
w(L,v) = Svie— v

The max-facet-width of L Is the number:
w(L) := "X w(L, 7).
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Width measure and width size

Let (7*)1'z > #k with (7% #f) € Z" for k =1,2,... nf

be the facets of a split body L.

The width of L along v is the number (see Lovasz):

. max_T min 7T
w(L,v) = Svie— v

The max-facet-width of L is the number:

w(L) := "X w(L, 7).

=

Observe : any standard split set {z : mg < 7!z < mg + 1}

has max-facet-width equal to one.
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Width measure and width size

=

Let (7*)1'z > #k with (7% #f) € Z" for k =1,2,... nf
be the facets of a split body L.

The width of L along v is the number (see Lovasz):
w(L,v) = Toly — Moty

The max-facet-width of L is the number:

w(L) := "X w(L, 7).

Observe : any standard split set {z : mg < 7!z < mg + 1}
has max-facet-width equal to one.

Our example : The set {x € R? : 2 > 0 and 1 + 22 < 2}
has max-facet-width equal to two.

-
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O Width size of 61z > §p : Min. w s.t. 51z > &y is valid for
R(L, P) for a split body L with max-facet-width w.



Width measure and width size

O Width size of 61z > §p : Min. w s.t. 51z > &y is valid for
R(L, P) for a split body L with max-facet-width w.

O Consider the mixed integer set:
{(.I,g) c 7P x R+ :
y<xz;forr=12,...,p,
?;:1 T +y<p
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Width measure and width size

O Width size of 61z > §p : Min. w s.t. 51z > &y is valid for
R(L, P) for a split body L with max-facet-width w.

O Consider the mixed integer set:
{(.I,g) c 7P x R+ :
y<xz;forr=12,...,p,
?;:1 Ti+Y <D
b

{  The valid inequality y < 0 has width size p.
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Given a number w > 1, define:
LY .= {L : Lis asplit body satisfying w(L) < w}

of split bodies with max-facet-width at most w.

& When w = 1, £ is the (usual) set of split bodies
L = {2 :mo <7wlaz <m+ 1}, where (7, m) € Z" L,
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of split bodies with max-facet-width at most w.

& When w = 1, £ is the (usual) set of split bodies
L = {2 :mo <7wlaz <m+ 1}, where (7, m) € Z" L,

O For any w > 1, the w™ split closure is defined to be:

Clw(P) = mLELwR(L,P).
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Given a number w > 1, define:
LY .= {L : Lis asplit body satisfying w(L) < w}

of split bodies with max-facet-width at most w.

& When w = 1, £ is the (usual) set of split bodies
L = {2 :mo <7wlaz <m+ 1}, where (7, m) € Z" L,

O For any w > 1, the w™ split closure is defined to be:
Clw(P) = mLELwR(L,P).

O For w =1, Cl;(P) is known to be a polyhedron.

o -
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Higher dimensional split closures
R

Given a number w > 1, define:
LY .= {L : Lis asplit body satisfying w(L) < w}

of split bodies with max-facet-width at most w.

& When w = 1, £ is the (usual) set of split bodies
L = {2 :mo <7wlaz <m+ 1}, where (7, m) € Z" L,

O For any w > 1, the w™ split closure is defined to be:

Clw(P> = mLELwR(L,P).

<>

For w =1, Cl;(P) is known to be a polyhedron.
O Theorem: Forany w > 1and S C LY,

L NresR(L, P) is a polyhedron.
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Proof of polyhedrality
-

O We prove the following general polyhedrality result...

=
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Proof of polyhedrality
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$ Given any family {(6")'z > 6}},., of rational cuts for P.

We prove the following general polyhedrality result...
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Proof of polyhedrality

We prove the following general polyhedrality result...
Given any family {(6")Yz > 6}},., of rational cuts for P.

We give a sufficient condition for
{w € P:(8")!z > ¢, foralll € I} to be a polyhedron.
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Proof of polyhedrality

We prove the following general polyhedrality result...
Given any family {(6")Yz > 6}},., of rational cuts for P.

We give a sufficient condition for
{w € P:(8")!z > ¢, foralll € I} to be a polyhedron.

We can assume all cuts {(6")'z > &4}, cut off the
same set V“ C V of vertices of P.
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Proof of polyhedrality

We prove the following general polyhedrality result...

Given any family {(6")Yz > 6}},., of rational cuts for P.

We give a sufficient condition for
{w € P:(8")!z > ¢, foralll € I} to be a polyhedron.

We can assume all cuts {(6")'z > &4}, cut off the
same set V¢ C V of vertices of P.

Notation : Given triple (¢, k,1) e Ve x (V\V¢) x I

(v* is cut off, v* is not cut off and [ is an inequality)....
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Proof of polyhedrality

We prove the following general polyhedrality result...
Given any family {(6")Yz > 6}},., of rational cuts for P.

We give a sufficient condition for
{w € P:(8")!z > ¢, foralll € I} to be a polyhedron.

We can assume all cuts {(6")'z > &4}, cut off the
same set V¢ C V of vertices of P.

Notation : Given triple (¢, k,1) e Ve x (V\V¢) x I

(v* is cut off, v* is not cut off and [ is an inequality)....
... define 3, ;.; €0, 1] to be such that the point:

vl + By (0P — 0t satisfies (6')Tz > 4 with equality.

Hiaher dimensional split closures and lattice point free sets
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Proof of Polyhedrality

. .

Theorem: If for all (i, k) and g* €]0, 1], we have:
{6i,k,l [ € [ and 6@',k,l > 6*} IS finite,

then {x € P: (6")1x > &, foralll € I} is a polyhedron.



Proof of Polyhedrality

. .

Theorem: If for all (i, k) and g* €]0, 1], we have:
{6i,k,l [ € [ and 6@',16,[ > 6*} IS finite,

then {x € P: (6")1x > &, foralll € I} is a polyhedron.
{  The proof is by induction on |V \ V¢| + |E].
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Proof of Polyhedrality

Theorem: If for all (i, k) and g* €]0, 1], we have:
{6i,k,l [ € [ and 6@',k,l > 6*} IS finite,

then {x € P: (6")1x > &, foralll € I} is a polyhedron.
The proof is by induction on |V \ V¢| + | E|.

We use this theorem on inequalities 6z > §, that
define facets of R(L, P) for some L € S C LY to show:

NresR(L, P) is a polyhedron.
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