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♦ Lattice point free convex sets

♦ Split bodies and cutting planes

♦ Structure of relaxations from split bodies

♦ Size measures of split bodies

♦ Higher dimensional split closures

♦ Polyhedrality of higher dimensional split closures
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Lattice point free sets

♦ A convex set L is lattice point free, iff L has
no integer points in its interior.

♦ If L is maximal wrt. inclusion then L is a polyhedron.

♦ If L is a maximal lattice point free rational polyhedron,
then L is full dimensional.

♦ We call maximal lattice point free rational polyhedra for
split bodies.

♦ The “standard” split body: {x ∈ R
n : π0 ≤ πT x ≤ π0 + 1},

where (π, π0) ∈ Z
n+1.

♦ Standard split bodies can be used for deriving:
⇒ Mixed integer Gomory cuts (Gomory).
⇒ Mixed integer rounding cuts

(Nemhauser and Wolsey).
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Split bodies and cutting planes

♦ Let P be an LP relaxation of an integer set PI .

♦ A split body L gives a stronger relaxation of PI

R(L,P ) := conv({x ∈ P : x /∈ int(L)}).

♦ If P is mixed with (x, y) ∈ Z
p × R

q, we extend L to
L̃ := {(x, y) ∈ R

p+q : x ∈ L}

♦ If L is a standard split set, then valid inequalities for
R(L,P ) are called split cuts.

♦ We show (for a general split body L):
⇒ R(L,P ) is a rational polyhedron.
⇒ R(L,P ) 6= P iff v ∈ int(L) for some vertex v of P .

♦ We call valid inequalities for R(L,P ) higher rank split
cuts.
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A split body and an LP relaxation
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♦ Notation:
V in ∼ vertices i ∈ V of P such that vi ∈ int(L)

V out ∼ vertices i ∈ V of P such that vi /∈ int(L)

♦ It seems every vertex of R(L,P ) is on a line between
vertices vi1 ∈ int(L) and vi2 /∈ int(L).

♦ For i ∈ V in and k ∈ V out, let βi,k ∈]0, 1] be s.t.
ipi,k := βi,kv

k + (1 − βi,k)v
i is on the boundary of L.

♦ We call ipi,k an intersection point (Balas).
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♦ A subset of P induced by i ∈ V in:
P i := conv({vi ∪ {vk}k∈V out)

(exactly one vertex in int(L)).

♦ Trivially P = conv(∪i∈V inP i).

♦ Define Λ := {λ ≥ 0 :
∑

k∈V out λk ≤ 1}.

♦ We have that P i is the projection of the set:
Qi := {(x, λ) : x = vi +

∑
k∈V out λk(v

k − vi), λ ∈ Λ}

onto the space of x-variables.

♦ Theorem:
R(L,Qi) = {(x, λ) ∈ Qi :

∑
k∈V out

λk

βi,k
≥ 1}.
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Relaxations from split bodies

♦ There is only one inequality needed to describe
R(L,Qi).

♦ The inequality
∑

k∈V out
λk

βi,k
≥ 1 is an intersection cut

(Balas).

♦ Every vertex of R(L,P ) is an intersection point ipi,k for
some i ∈ V in and k ∈ V out.

♦ We can write R(L,P ) = conv(∪i∈V inR(L,P i)).

♦ R(L,P ) is completely characterized by the intersection
points.
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Width measure and width size

♦ Let (πk)Tx ≥ πk
0 with (πk, πk
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♦ Let (πk)Tx ≥ πk
0 with (πk, πk

0 ) ∈ Z
n+1 for k = 1, 2, . . . , nf

be the facets of a split body L.

♦ The width of L along v is the number (see Lovász):
w(L, v) := max

x∈L
vT x − min

x∈L
vT x.

♦ The max-facet-width of L is the number:
w(L) := max

k
w(L, πk).

♦ Observe : any standard split set {x : π0 ≤ πT x ≤ π0 + 1}
has max-facet-width equal to one.

♦ Our example : The set {x ∈ R
2 : x ≥ 0 and x1 + x2 ≤ 2}

has max-facet-width equal to two.
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Width measure and width size

♦ Width size of δTx ≥ δ0 : Min. w s.t. δTx ≥ δ0 is valid for
R(L,P ) for a split body L with max-facet-width w.
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R(L,P ) for a split body L with max-facet-width w.

♦ Consider the mixed integer set:
{(x, y) ∈ Z

p × R+ :
y ≤ xi for i = 1, 2, . . . , p,∑p

i=1
xi + y ≤ p

}.
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Width measure and width size

♦ Width size of δTx ≥ δ0 : Min. w s.t. δTx ≥ δ0 is valid for
R(L,P ) for a split body L with max-facet-width w.

♦ Consider the mixed integer set:
{(x, y) ∈ Z

p × R+ :
y ≤ xi for i = 1, 2, . . . , p,∑p

i=1
xi + y ≤ p

}.

♦ The valid inequality y ≤ 0 has width size p.
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Higher dimensional split closures

♦ Given a number w ≥ 1, define:

Lw := {L : L is a split body satisfying w(L) ≤ w}

of split bodies with max-facet-width at most w.
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♦ Given a number w ≥ 1, define:

Lw := {L : L is a split body satisfying w(L) ≤ w}

of split bodies with max-facet-width at most w.

♦ When w = 1, Lw is the (usual) set of split bodies
Lπ,π0

= {x : π0 ≤ πT x ≤ π0 + 1}, where (π, π0) ∈ Z
n+1.

♦ For any w ≥ 1, the wth split closure is defined to be:

Clw(P ) := ∩L∈LwR(L,P ).

♦ For w = 1, Cl1(P ) is known to be a polyhedron.

♦ Theorem: For any w ≥ 1 and S ⊆ Lw,

∩L∈SR(L,P ) is a polyhedron.
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Proof of polyhedrality

♦ We prove the following general polyhedrality result...
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0 for all l ∈ I} to be a polyhedron.

♦ We can assume all cuts {(δl)Tx ≥ δl
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same set V c ⊂ V of vertices of P .
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Proof of polyhedrality

♦ We prove the following general polyhedrality result...

♦ Given any family {(δl)T x ≥ δl
0}l∈I of rational cuts for P .

♦ We give a sufficient condition for
{x ∈ P : (δl)T x ≥ δl

0 for all l ∈ I} to be a polyhedron.

♦ We can assume all cuts {(δl)Tx ≥ δl
0}l∈I cut off the

same set V c ⊂ V of vertices of P .

♦ Notation : Given triple (i, k, l) ∈ V c × (V \ V c) × I

(vi is cut off, vk is not cut off and l is an inequality)....

♦ ... define βi,k,l ∈]0, 1] to be such that the point:
vi + βi,k,l(v

k − vi) satisfies (δl)T x ≥ δl
0 with equality.
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Proof of Polyhedrality

♦ Theorem: If for all (i, k) and β∗ ∈]0, 1], we have:

{βi,k,l : l ∈ I and βi,k,l ≥ β∗} is finite,

then {x ∈ P : (δl)T x ≥ δl
0 for all l ∈ I} is a polyhedron.
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Proof of Polyhedrality

♦ Theorem: If for all (i, k) and β∗ ∈]0, 1], we have:

{βi,k,l : l ∈ I and βi,k,l ≥ β∗} is finite,

then {x ∈ P : (δl)T x ≥ δl
0 for all l ∈ I} is a polyhedron.

♦ The proof is by induction on |V \ V c| + |E|.

♦ We use this theorem on inequalities δTx ≥ δ0 that
define facets of R(L,P ) for some L ∈ S ⊆ Lw to show:

∩L∈SR(L,P ) is a polyhedron.
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	cblack {Outline}
	cblack {Outline}
	cblack {Outline}
	cblack {Outline}
	cblack {Outline}
	cblack {Outline}

	cblack {Lattice point free sets}
	cblack {Lattice point free sets}
	cblack {Lattice point free sets}
	cblack {Lattice point free sets}
	cblack {Lattice point free sets}
	cblack {Lattice point free sets}

	Split bodies : Examples
	Split bodies : Examples

	cblack {Split bodies and cutting planes}
	cblack {Split bodies and cutting planes}
	cblack {Split bodies and cutting planes}
	cblack {Split bodies and cutting planes}
	cblack {Split bodies and cutting planes}
	cblack {Split bodies and cutting planes}

	A split body and an LP relaxation
	A split body and an LP relaxation

	cblack {Relaxations from split bodies}
	cblack {Relaxations from split bodies}
	cblack {Relaxations from split bodies}
	cblack {Relaxations from split bodies}
	cblack {Relaxations from split bodies}

	cblack {Relaxations from split bodies}
	cblack {Relaxations from split bodies}
	cblack {Relaxations from split bodies}
	cblack {Relaxations from split bodies}
	cblack {Relaxations from split bodies}

	cblack {Relaxations from split bodies}
	cblack {Relaxations from split bodies}
	cblack {Relaxations from split bodies}
	cblack {Relaxations from split bodies}
	cblack {Relaxations from split bodies}

	The example continued
	The example continued
	The example continued

	cblack {Width measure and width size}
	cblack {Width measure and width size}
	cblack {Width measure and width size}
	cblack {Width measure and width size}
	cblack {Width measure and width size}

	cblack {Width measure and width size}
	cblack {Width measure and width size}
	cblack {Width measure and width size}

	cblack {Higher dimensional split closures}
	cblack {Higher dimensional split closures}
	cblack {Higher dimensional split closures}
	cblack {Higher dimensional split closures}
	cblack {Higher dimensional split closures}

	cblack {Proof of polyhedrality}
	cblack {Proof of polyhedrality}
	cblack {Proof of polyhedrality}
	cblack {Proof of polyhedrality}
	cblack {Proof of polyhedrality}
	cblack {Proof of polyhedrality}

	cblack {Proof of Polyhedrality}
	cblack {Proof of Polyhedrality}
	cblack {Proof of Polyhedrality}


